
CS	110
Computer	Architecture	

Running	a	Program		- CALL
(Compiling,	Assembling,	
Linking,	and	Loading)

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., MIPS)

Machine Language
Program (MIPS)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

2

Logic Circuit Description
(Circuit Schematic Diagrams)

+ How to take
a program
and run it

Language	Execution	Continuum
• An	Interpreter	is	a	program	that	executes	other	
programs.

• Language	translation	gives	us	another	option	
• In	general,	we	interpret	a	high-level	language	
when	efficiency	is	not	critical	and	translate	to	a	
lower-level	language	to	increase	performance

Easy to program
Inefficient to interpret

Difficult to program
Efficient to interpret

Scheme Java C++ C Assembly Machine code
Java bytecode

3

Interpretation	vs	Translation

• How	do	we	run	a	program	written	in	a	source	
language?
– Interpreter:	Directly	executes	a	program	in	the	
source	language

– Translator:	Converts	a	program	from	the	source	
language	to	an	equivalent	program	in	another	
language

• For	example,	consider	a	Python	program	
foo.py

4

Interpretation

• Python	interpreter	is	just	a	program	that	reads	a	
python	program	and	performs	the	functions	of	
that	python	program.

5

Interpretation
• Any	good	reason	to	interpret	machine	language	in	
software?

• MARS– useful	for	learning	/	debugging
• Apple	Macintosh	conversion
– Switched	from	Motorola	680x0	instruction	architecture	to	
PowerPC.
• Similar	issue	with	switch	to	x86

– Could	require	all	programs	to	be	re-translated	from	high	
level	language

– Instead,	let	executables	contain	old	and/or	new	machine	
code,	interpret	old	code	in	software	if	necessary	
(emulation)

6

Interpretation	vs.	Translation?	(1/2)

• Generally	easier	to	write	interpreter
• Interpreter	closer	to	high-level,	so	can	give	
better	error	messages	(e.g.,	MARS)
– Translator	reaction:	add	extra	information	to	help	
debugging	(line	numbers,	names)

• Interpreter	slower	(10x?),	code	smaller	(2x?)
• Interpreter	provides	instruction	set	
independence:	run	on	any	machine

7

Interpretation	vs.	Translation?	(2/2)

• Translated/compiled	code	almost	always	more	
efficient	and	therefore	higher	performance:
– Important	for	many	applications,	particularly	
operating	systems.

• Translation/compilation	helps	“hide”	the	program	
“source”	from	the	users:
– One	model	for	creating	value	in	the	marketplace	(eg.	
Microsoft	keeps	all	their	source	code	secret)

– Alternative	model,	“open	source”,	creates	value	by	
publishing	the	source	code	and	fostering	a	community	
of	developers.

8

Steps	in	compiling	a	C	program

9

Compiler
• Input:	High-Level	Language	Code	
(e.g.,	foo.c)

• Output:	Assembly	Language	Code
(e.g.,	foo.s for	MIPS)

• Note:	Output	may contain	pseudo-instructions
• Pseudo-instructions:	instructions	that	
assembler	understands	but	not	in	machine
For	example:
– move $s1,$s2Þ add $s1,$s2,$zero

10

Where	Are	We	Now?

Compiler Class

11

Assembler
• Input:	Assembly	Language	Code	(MAL)
(e.g.,	foo.s for	MIPS)

• Output:	Object	Code,	information	tables	(TAL)
(e.g.,	foo.o for	MIPS)

• Reads	and	Uses	Directives
• Replace	Pseudo-instructions
• Produce	Machine	Language
• Creates	Object	File

12

Assembler	Directives	(p.	A-13..	A-17)
• Give	directions	to	assembler,	but	do	not	
produce	machine	instructions
.text: Subsequent	items	put	in	user	text	
segment	(machine	code)
.data: Subsequent	items	put	in	user	data	
segment	(binary	rep	of	data	in	source	file)
.globl sym: declares	sym global	and	can	be	
referenced	from	other	files
.asciiz str: Store	the	string	str in	memory	
and	null-terminate	it
.word w1…wn: Store	the	n 32-bit	quantities	in	
successive	memory	words

13

Pseudo-instruction	Replacement
• Assembler	treats	convenient	variations	of	machine	
language	instructions	as	if	real	instructions
Pseudo: Real:
subu $sp,$sp,32 addiu $sp,$sp,-32
sd $a0, 32($sp) sw $a0, 32($sp)

sw $a1, 36($sp)
mul $t7,$t6,$t5 mult $t6,$t5

mflo $t7
addu $t0,$t6,1 addiu $t0,$t6,1
ble $t0,100,loop slti $at,$t0,101

bne $at,$0,loop
la $a0, str lui $at,left(str)

ori $a0,$at,right(str)

14

Question
Which	of	the	following	is	a	correct	TAL	
instruction	sequence	for	la	$v0,	FOO?*
%hi(label),	tells	assembler	to	fill	upper	16	bits	of	label’s	addr
%lo(label),	tells	assembler	to	fill	lower	16	bits	of	label’s	addr

A:	ori $v0,	%hi(FOO)
addiu $v0,	%lo(FOO)

B:	ori $v0,	%lo(FOO)
lui $v0,	%hi(FOO)

C:	lui $v0,	%lo(FOO)
ori $v0,	%hi(FOO)

D:	lui $v0,	%hi(FOO)
ori $v0,	%lo(FOO)

E:	la	$v0,	FOO	is	already	
a	TAL	instruction

*Assume	the	address	of	
FOO	is	0xABCD0124 15

Producing	Machine	Language	(1/3)

• Simple	Case
– Arithmetic,	Logical,	Shifts,	and	so	on
– All	necessary	info	is	within	the	instruction	already

• What	about	Branches?
– PC-Relative
– So	once	pseudo-instructions	are	replaced	by	real	
ones,	we	know	by	how	many	instructions	to	
branch

• So	these	can	be	handled

16

Producing	Machine	Language	(2/3)

• “Forward	Reference”	problem
– Branch	instructions	can	refer	to	labels	that	are	
“forward”	in	the	program:

– Solved	by	taking	2	passes	over	the	program
• First	pass	remembers	position	of	labels
• Second	pass	uses	label	positions	to	generate	code	

or $v0, $0, $0
L1: slt $t0, $0, $a1

beq $t0, $0, L2
addi $a1, $a1, -1
j L1

L2: add $t1, $a0, $a1

17

Producing	Machine	Language	(3/3)
• What	about	jumps	(j and	jal)?
– Jumps	require	absolute	address
– So,	forward	or	not,	still	can’t	generate	machine	
instruction	without	knowing	the	position	of	
instructions	in	memory

• What	about	references	to	static	data?
– la gets	broken	up	into	lui and	ori
– These	will	require	the	full	32-bit	address	of	the	data

• These	can’t	be	determined	yet,	so	we	create	
two	tables…

18

Symbol	Table

• List	of	“items”	in	this	file	that	may	be	used	by	
other	files

• What	are	they?
– Labels:	function	calling
– Data:	anything	in	the	.data section;	variables	
which	may	be	accessed	across	files

19

Relocation	Table
• List	of	“items”	this	file	needs	the	address	of	
later

• What	are	they?
– Any	label	jumped	to:	j or	jal
• internal
• external	(including	lib	files)

– Any	piece	of	data	in	static	section
• such	as	the	la instruction

20

Object	File	Format
• object	file	header:	size	and	position	of	the	other	
pieces	of	the	object	file

• text	segment:	the	machine	code
• data	segment:	binary	representation	of	the	static	
data	in	the	source	file

• relocation	information:	identifies	lines	of	code	that	
need	to	be	fixed	up	later

• symbol	table:	list	of	this	file’s	labels	and	static	data	
that	can	be	referenced

• debugging	information
• A	standard	format	is	ELF	(except	MS)

http://www.skyfree.org/linux/references/ELF_Format.pdf 21

Admin

• HW	3	will	be	published	this	week	(MIPS	
Assembly	programming)

• Project	1.1	will	be	published	this	week	
(program	an	Assembler	in	C)
– Send	the	TA	of	your	lab	a	mail	with	subject	”[CA]”	
and	body:
• Additional,	external	email	address	(the	new	gradebot
key	will	be	send	there)
• The	email	addresses	of	the	two	team	members.

22

Where	Are	We	Now?

23

Linker	(1/3)
• Input:	Object	code	files,	information	tables	(e.g.,	
foo.o,libc.o for	MIPS)

• Output:	Executable	code
(e.g.,	a.out for	MIPS)

• Combines	several	object	(.o)	files	into	a	single	
executable	(“linking”)	

• Enable	separate	compilation	of	files
– Changes	to	one	file	do	not	require	recompilation	of	the	
whole	program
• Windows	NT	source was	>	40	M	lines	of	code!	

– Old	name	“Link	Editor”	from	editing	the	“links”	in	jump	
and	link	instructions

24

.o file 1
text 1
data 1
info 1

.o file 2
text 2
data 2
info 2

Linker

a.out
Relocated text 1
Relocated text 2
Relocated data 1
Relocated data 2

Linker	(2/3)

25

Linker	(3/3)

• Step	1:	Take	text	segment	from	each	.o file	
and	put	them	together

• Step	2:	Take	data	segment	from	each	.o file,	
put	them	together,	and	concatenate	this	onto	
end	of	text	segments

• Step	3:	Resolve	references
– Go	through	Relocation	Table;	handle	each	entry
– That	is,	fill	in	all	absolute	addresses

26

Four	Types	of	Addresses

• PC-Relative	Addressing	(beq,	bne)
– never	relocate

• Absolute	Function	Address	(j,	jal)
– always	relocate

• External	Function	Reference	(usually	jal)
– always	relocate

• Static	Data	Reference	(often	lui and	ori)
– always	relocate	

27

Absolute	Addresses	in	MIPS

• Which	instructions	need	relocation	editing?
– J-format:	jump,	jump	and	link

– Loads	and	stores	to	variables	in	static	area,	relative	to	
global	pointer

– What	about	conditional	branches?

– PC-relative	addressing	preserved	even	if	code	moves	

j/jal xxxxx

lw/sw $gp $x address

beq/bne $rs $rt address

28

Resolving	References	(1/2)

• Linker	assumes	first	word	of	first	text	segment	is	
at	address	0x04000000.
– (More	later	when	we	study	“virtual	memory”)

• Linker	knows:
– length	of	each	text	and	data	segment
– ordering	of	text	and	data	segments

• Linker	calculates:
– absolute	address	of	each	label	to	be	jumped	to	
(internal	or	external)	and	each	piece	of	data	being	
referenced

29

Resolving	References	(2/2)

• To	resolve	references:
– search	for	reference	(data	or	label)	in	all	“user”	
symbol	tables

– if	not	found,	search	library	files	
(for	example,	for	printf)

– once	absolute	address	is	determined,	fill	in	the	
machine	code	appropriately

• Output	of	linker:	executable	file	containing	
text	and	data	(plus	header)

30

Where	Are	We	Now?

31

Loader	Basics

• Input:	Executable	Code
(e.g.,	a.out for	MIPS)

• Output:	(program	is	run)
• Executable	files	are	stored	on	disk
• When	one	is	run,	loader’s	job	is	to	load	it	into	
memory	and	start	it	running

• In	reality,	loader	is	the	operating	system	(OS)	
– loading	is	one	of	the	OS	tasks

32

Loader	…	what	does	it	do?
• Reads	executable	file’s	header	to	determine	size	of	text	and	

data	segments
• Creates	new	address	space	for	program	large	enough	to	hold	

text	and	data	segments,	along	with	a	stack	segment
• Copies	instructions	and	data	from	executable	file	into	the	new	

address	space
• Copies	arguments	passed	to	the	program	onto	the	stack
• Initializes	machine	registers

– Most	registers	cleared,	but	stack	pointer	assigned	address	of	1st	free	
stack	location

• Jumps	to	start-up	routine	that	copies	program’s	arguments	
from	stack	to	registers	&	sets	the	PC
– If	main	routine	returns,	start-up	routine	terminates	program	with	the	

exit	system	call 33

Question
At	what	point	in	process	are	all	the	machine	
code	bits	generated	for	the	following	assembly	
instructions:
1)	addu $6, $7, $8
2)	jal fprintf

A:	1)	&	2)	After	compilation
B:	1)	After	compilation,		2)	After	assembly
C:	1)	After	assembly,							2)	After	linking
D:	1)	After	assembly,						2)	After	loading
E:	1)	After	compilation,		2)	After	linking

34

Example:	CÞ AsmÞ ObjÞ Exe	Þ Run	

#include <stdio.h>
int main (int argc, char *argv[]) {
int i, sum = 0;
for (i = 0; i <= 100; i++)

sum = sum + i * i;
printf ("The sum of sq from 0 .. 100 is
%d\n", sum);

}

C Program Source Code: prog.c

“printf” lives in “libc”

35

Compilation:	MAL
.text
.align 2
.globl main

main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)

loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
jr $ra
.data
.align 0

str:
.asciiz "The sum
of sq from 0 ..
100 is %d\n"

Where are
7 pseudo-
instructions?

36

Compilation:	MAL
.text
.align 2
.globl main

main:
subu $sp,$sp,32
sw $ra, 20($sp)
sd $a0, 32($sp)
sw $0, 24($sp)
sw $0, 28($sp)

loop:
lw $t6, 28($sp)
mul $t7, $t6,$t6
lw $t8, 24($sp)
addu $t9,$t8,$t7
sw $t9, 24($sp)

addu $t0, $t6, 1
sw $t0, 28($sp)
ble $t0,100, loop
la $a0, str
lw $a1, 24($sp)
jal printf
move $v0, $0
lw $ra, 20($sp)
addiu $sp,$sp,32
jr $ra
.data
.align 0

str:
.asciiz "The sum
of sq from 0 ..
100 is %d\n"

7 pseudo-
instructions
underlined

37

Assembly	step	1:

00 addiu $29, $29,-32
04 sw $31, 20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25, $24,$15
2c sw $25, 24($29)

30 addiu $8, $14, 1
34 sw $8, 28($29)
38 slti $1, $8, 101
3c bne $1, $0, loop
40 lui $4, l.str
44 ori $4, $4,r.str
48 lw $5, 24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31, 20($29)
58 addiu $29, $29,32
5c jr $31

Remove pseudoinstructions, assign addresses

38

Assembly	step	2

• Symbol	Table	
Label	 address	(in	module) type
main: 0x00000000 global text
loop: 0x00000018 local text
str: 0x00000000 local data

• Relocation	Information
Address Instr.		type Dependency
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf

Create relocation table and symbol table

39

Assembly	step	3

00 addiu $29,$29,-32
04 sw $31,20($29)
08 sw $4, 32($29)
0c sw $5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw $8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, l.str
44 ori $4,$4,r.str
48 lw $5,24($29)
4c jal printf
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr $31

Resolve local PC-relative labels

40

Assembly	step	4

• Generate	object	(.o)	file:
– Output	binary	representation	for
• text	segment	(instructions)
• data	segment	(data)
• symbol	and	relocation	tables

– Using	dummy	“placeholders”	for	unresolved	
absolute	and	external	references

41

Text	segment	in	object	file
0x000000 00100111101111011111111111100000
0x000004 10101111101111110000000000010100
0x000008 10101111101001000000000000100000
0x00000c 10101111101001010000000000100100
0x000010 10101111101000000000000000011000
0x000014 10101111101000000000000000011100
0x000018 10001111101011100000000000011100
0x00001c 10001111101110000000000000011000
0x000020 00000001110011100000000000011001
0x000024 00100101110010000000000000000001
0x000028 00101001000000010000000001100101
0x00002c 10101111101010000000000000011100
0x000030 00000000000000000111100000010010
0x000034 00000011000011111100100000100001
0x000038 00010100001000001111111111110111
0x00003c 10101111101110010000000000011000
0x000040 00111100000001000000000000000000
0x000044 10001111101001010000000000000000
0x000048 00001100000100000000000011101100
0x00004c 00100100000000000000000000000000
0x000050 10001111101111110000000000010100
0x000054 00100111101111010000000000100000
0x000058 00000011111000000000000000001000
0x00005c 00000000000000000001000000100001

42

Link	step	1:	combine	prog.o,	libc.o

• Merge	text/data	segments
• Create	absolute	memory	addresses
• Modify	&	merge	symbol	and	relocation	tables
• Symbol	Table	
– Label	 Address
main: 0x00000000
loop: 0x00000018
str: 0x10000430
printf: 0x000003b0 …

• Relocation	Information
– Address Instr.	Type Dependency	
0x00000040 lui l.str
0x00000044 ori r.str
0x0000004c jal printf …

43

Link	step	2:

00 addiu $29,$29,-32
04 sw$31,20($29)
08 sw$4, 32($29)
0c sw$5, 36($29)
10 sw $0, 24($29)
14 sw $0, 28($29)
18 lw $14, 28($29)
1c multu $14, $14
20 mflo $15
24 lw $24, 24($29)
28 addu $25,$24,$15
2c sw $25, 24($29)

30 addiu $8,$14, 1
34 sw$8,28($29)
38 slti $1,$8, 101
3c bne $1,$0, -10
40 lui $4, 4096
44 ori $4,$4,1072
48 lw$5,24($29)
4c jal 944
50 add $2, $0, $0
54 lw $31,20($29)
58 addiu $29,$29,32
5c jr$31

• Edit Addresses in relocation table
• (shown in TAL for clarity, but done in binary)

44

Link	step	3:

• Output	executable	of	merged	modules
– Single	text	(instruction)	segment
– Single	data	segment
– Header	detailing	size	of	each	segment

• NOTE:
– The	preceeding example	was	a	much	simplified	
version	of	how	ELF	and	other	standard	formats	work,	
meant	only	to	demonstrate	the	basic	principles.

45

Static	vs	Dynamically	linked	libraries

• What	we’ve	described	is	the	traditional	way:	
statically-linked approach
– The	library	is	now	part	of	the	executable,	so	if	the	
library	updates,	we	don’t	get	the	fix	(have	to	
recompile	if	we	have	source)

– It	includes	the	entire library	even	if	not	all	of	it	will	be	
used

– Executable	is	self-contained
• An	alternative	is	dynamically	linked	libraries	
(DLL),	common	on	Windows	(.dll)	&	UNIX	(.so)	
platforms

46

Dynamically	linked	libraries

• Space/time	issues
+	Storing	a	program	requires	less	disk	space
+	Sending	a	program	requires	less	time			
+	Executing	two	programs	requires	less	memory	(if	they	
share	a	library)
– At	runtime,	there’s	time	overhead	to	do	link

• Upgrades
+	Replacing	one	file	(libXYZ.so)	upgrades	every	
program	that	uses	library	“XYZ”
– Having	the	executable	isn’t	enough	anymore

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and operating system.
However, it provides many benefits that often outweigh these

en.wikipedia.org/wiki/Dynamic_linking

47

Dynamically	linked	libraries

• The	prevailing	approach	to	dynamic	linking	
uses	machine	code	as	the	“lowest	common	
denominator”
– The	linker	does	not	use	information	about	how	
the	program	or	library	was	compiled	(i.e.,	what	
compiler	or	language)

– This	can	be	described	as	“linking	at	the	machine	
code	level”

– This	isn’t	the	only	way	to	do	it	...

48

In	Conclusion…
§ Compiler converts a single HLL file

into a single assembly language file.
§ Assembler removes pseudo-

instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.
ú Does 2 passes to resolve addresses,

handling internal forward references

§ Linker combines several .o files and
resolves absolute addresses.
ú Enables separate compilation, libraries

that need not be compiled, and
resolves remaining addresses

§ Loader loads executable into memory
and begins execution.

49

