
CS	110
Computer	Architecture	

Caches	Part	1

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
2

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

How	do
we	know?

Processor

Control

Datapath

Components	of	a	Computer

3

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Problem:	Large	memories	slow?
Library	Analogy

• Finding	a	book	in	a	large	library	takes	time
– Takes	time	to	search	a	large	card	catalog	– (mapping	
title/author	to	index	number)

– Round-trip	time	to	walk	to	the	stacks	and	retrieve	the	
desired	book.

• Larger	libraries	makes	both	delays	worse
• Electronic	memories	have	the	same	issue,	plus
the	technologies	that	we	use	to	store	an	
individual	bit	get	slower	as	we	increase	density	
(SRAM	versus	DRAM	versus	Magnetic	Disk)

4However	what	we	want	is	a	large	yet	fast	memory!	

Processor-DRAM	Gap	(latency)

5

Time

µProc	60%/year

DRAM
7%/year

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance	Gap:
(growing	50%/yr)

Pe
rfo

rm
an
ce

1980	microprocessor	executes	~one	instruction	in	same	time	as	DRAM	access
2015	microprocessor	executes	~1000	instructions	in	same	time	as	DRAM	access

Slow	DRAM	access	could	have	disastrous	impact	on	CPU	performance!	

Big	Idea:	Memory	Hierarchy
Processor

Size	of	memory	at	each	level

Increasing
distance	from
processor,
decreasing		
speed

Level	1

Level	2

Level	n

Level	3

.	.	.

Inner

Outer

Levels	in	
memory	
hierarchy

As	we	move	to outer	levels	the	latency	goes	up
and	price	per	bit	goes	down.	Why?

6

What	to	do:	Library	Analogy
• Want	to	write	a	report	using	library	books
• Go	to	library,	look	up	relevant	books,	fetch	from	
stacks,	and	place	on	desk	in	library

• If	need	more,	check	them	out	and	keep	on	desk
– But	don’t	return	earlier	books	since	might	need	
them

• You	hope	this	collection	of	~10	books	on	desk	
enough	to	write	report,	despite	10	being	only	a	
tiny	fraction	of	books	available	

7

Real	Memory	Reference	Patterns

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual
Memory. IBM Systems Journal 10(3): 168-192 (1971)

Time

M
em

or
y	
Ad

dr
es
s	(
on

e	
do

t	p
er
	a
cc
es
s)

Big	Idea:	Locality

• Temporal	Locality	(locality	in	time)
– Go	back	to	same	book	on	desktop	multiple	times
– If	a	memory	location	is	referenced,	then	it	will	tend	to	
be	referenced	again	soon

• Spatial	Locality (locality	in	space)
– When	go	to	book	shelf,	pick	up	multiple	books	on	J.D.	
Salinger	since	library	stores	related	books	together

– If	a	memory	location	is	referenced,	the	locations	with	
nearby	addresses	will	tend	to	be	referenced	soon

9

Memory	Reference	Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y	
Ad

dr
es
s	(
on

e	
do

t	p
er
	a
cc
es
s)

Spatial
Locality

Temporal
Locality

Principle	of	Locality

• Principle	of	Locality:	Programs	access	small	
portion	of	address	space	at	any	instant	of	time	
(spatial	locality)	and	repeatedly	access	that	
portion	(temporal	locality)

• What	program	structures	lead	to	temporal	
and	spatial	locality	in	instruction accesses?	

• In	data accesses?

11

Memory	Reference	Patterns
Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n	loop	iterations

subroutine	
call

subroutine	
return

argument	access

scalar	accesses

Cache	Philosophy
• Programmer-invisible	hardware	mechanism	to	
give	illusion	of	speed	of	fastest	memory	with	
size	of	largest	memory
–Works	fine	even	if	programmer	has	no	idea	what	a	
cache	is

– However,	performance-oriented	programmers	
today	sometimes	“reverse	engineer”	cache	design	
to	design	data	structures	to	match	cache

13

Memory	Access	without	Cache

• Load	word	instruction:	lw $t0,0($t1)
• $t1	contains	1022ten,	Memory[1022]	=	99

1. Processor	issues	address	1022ten	to	Memory
2. Memory	reads	word	at	address	1022ten	(99)
3. Memory	sends	99	to	Processor
4. Processor	loads	99	into	register	$t0

14

Processor

Control

Datapath

Adding	Cache	to	Computer

15

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Cache

Memory	Access	with	Cache
• Load	word	instruction:	lw $t0,0($t1)
• $t1	contains	1022ten,	Memory[1022]	=	99
• With	cache:	Processor	issues	address	1022ten	to	
Cache
1. Cache	checks	to	see	if	has	copy	of	data	at	address	

1022ten
2a. If	finds	a	match	(Hit):	cache	reads	99,	sends	to	processor
2b. No	match	(Miss):	cache	sends	address	1022	to	Memory

I. Memory	reads	99	at	address	1022ten
II. Memory	sends	99	to	Cache
III. Cache	replaces	word	with	new	99
IV. Cache	sends	99	to	processor

2. Processor	loads	99	into	register	$t0
16

Cache	“Tags”
• Need	way	to	tell	if	have	copy	of	location	in	
memory	so	that	can	decide	on	hit	or	miss

• On	cache	miss,	put	memory	address	of	block	
in	“tag	address”	of	cache	block
1022	placed	in	tag	next	to	data	from	memory	(99)

17

Tag Data

252 12
1022 99
131 7
2041 20

From	earlier
instructions

Anatomy	of	a	
16	Byte	Cache,	
4	Byte	Block

• Operations:
1. Cache	Hit
2. Cache	Miss
3. Refill	cache	from	

memory

• Cache	needs	Address	
Tags	to	decide	if	
Processor	Address	is	a	
Cache	Hit	or	Cache	Miss
– Compares	all	4	tags

18

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

Tag Data

252 12
1022 99
131 7
2041 20

Tag Data

252 12
1022 99
511 11
2041 20

Cache	Replacement
• Suppose	processor	now	requests	location	511,	which	
contains	11?

• Doesn’t	match	any	cache	block,	so	must	“evict”	one	
resident	block	to	make	room
– Which	block	to	evict?

• Replace	“victim”	with	new	memory	block	at	address	511

19

Block	Must	be	Aligned	in	Memory

• Word	blocks	are	aligned,	so	binary	address	of	
all	words	in	cache	always	ends	in	00two

• How	to	take	advantage	of	this	to	save	
hardware	and	energy?

• Don’t	need	to	compare	last	2	bits	of	32-bit	
byte	address	(comparator	can	be	narrower)

=>	Don’t	need	to	store	last	2	bits	of	32-bit	byte	
address	in	Cache	Tag	(Tag	can	be	narrower)

20

Anatomy	of	a	32B	
Cache,	8B	Block

21

• Blocks	must	be	aligned	
in	pairs,	otherwise	
could	get	same	word	
twice	in	cache

Ø Tags	only	have	even-
numbered	words

Ø Last	3	bits	of	address	
always	000two

Ø Tags,	comparators	can	
be	narrower	

• Can	get	hit	for	either	
word	in	block

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

42
1947

12

130
2040

1000
7
20

-10

Hardware	Cost	of	
Cache

• Need	to	compare	every	
tag	to	the	Processor	
address

• Comparators	are	
expensive

• Optimization:	use	2	
“sets”	of	data	with	a	total	
of	only	2	comparators

• 1	Address	bit	selects	
which	set

• Compare	only	tags	from	
selected	set

• Generalize	to	more	sets
2222

Processor

32-bit
Address

Tag Data

32-bit
Data

Cache
32-bit
Address

32-bit
Data

Memory

Tag Data

Set	0

Set	1

Tag Data

Tag Data

Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

23

Processor	Address	(32-bits	total)

What	is	limit	to	number	of	sets?
• For	a	given	total	number	of	blocks,	we	can	
save	more	comparators	if	have	more	than	2	
sets

• Limit:	As	Many	Sets	as	Cache	Blocks	=>	only	
one	block	per	set	– only	needs	one	
comparator!	

• Called	“Direct-Mapped”	Design

24

Block offsetIndexTag

Direct	Mapped	Cache	Ex:	
Mapping	a	6-bit	Memory	Address

• In	example,	block	size	is	4	bytes/1	word
• Memory	and	cache	blocks	always	the	same	size,	unit	of	transfer	between	

memory	and	cache
• #	Memory	blocks	>>	#	Cache	blocks

– 16	Memory	blocks	=	16	words	=	64	bytes	=>	6	bits	to	address	all	bytes
– 4	Cache	blocks,	4	bytes	(1	word)	per	block
– 4	Memory	blocks	map	to	each	cache	block

• Memory	block	to	cache	block,	aka	index:	middle	two	bits
• Which	memory	block	is	in	a	given	cache	block,	aka	tag:	top	two	bits

25

05 1

Byte	Within	Block

Byte	Offset

23

Block	Within	$

4

Mem Block	Within
$	Block

Tag Index

One	More	Detail:	Valid	Bit

• When	start	a	new	program,	cache	does	not	
have	valid	information	for	this	program

• Need	an	indicator	whether	this	tag	entry	is	
valid	for	this	program

• Add	a	“valid	bit”	to	the	cache	tag	entry
0	=>	cache	miss,	even	if	by	chance,	address	=	tag
1	=>	cache	hit,	if	processor	address	=	tag

26

Caching:		A	Simple	First	Example

00
01
10
11

Cache

Main	Memory

Q:	Where	in	the	cache	is	
the	mem block?

Use	next	2	low-order	
memory	address	bits	–
the	index	– to	determine	
which	cache	block	(i.e.,	
modulo	the	number	of	
blocks	in	the	cache)

Tag Data

Q:	Is	the	memory	block	in	
cache?
Compare	the	cache	tag	to	the	
high-order	2	memory	address	
bits	to	tell	if	the	memory	
block	is	in	the	cache	
(provided	valid	bit	is	set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One	word	blocks
Two	low	order	bits	(xx)	
define	the	byte	in	the
block	(32b	words)

Index

27

• One	word	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache	Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31	30							.	.	.							 13	12		11					.	.	.							 2		1		0
Byte	offset

What	kind	of	locality	are	we	taking	advantage	of?

20

Data

32

Hit

28

Valid	bit	
ensures	

something	
useful	in	
cache	for	
this	index

Compare	
Tag	with	

upper	part	of	
Address	to	
see	if	a	Hit

Read
data	
from	
cache	
instead	

of	
memory	
if	a	Hit

Comparator

• Four		words/block,	cache	size	=	1K	words

Multiword-Block	Direct-Mapped	Cache

8
Index

2

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31	30			.	.	.						 13	12 11				.	.	.				4 3		2		1		0 Byte	offset

20

20Tag

Hit Data

32

Word	offset

What	kind	of	locality	are	we	taking	advantage	of?
29

Cache	Names	for	Each	Organization
• “Fully	Associative”:	Block	can	go	anywhere
– First	design	in	lecture
– Note:	No	Index	field,	but	1	comparator/block

• “Direct	Mapped”:	Block	goes	one	place	
– Note:	Only	1	comparator
– Number	of	sets	=	number	blocks

• “N-way	Set	Associative”:	N	places	for	a	block
– Number	of	sets	=	number	of	blocks	/	N
– N	comparators
– Fully	Associative:	N	=	number	of	blocks
– Direct	Mapped:	N	=	1

30

Range	of	Set-Associative	Caches
• For	a	fixed-size	cache,	and	a	given	block	size,	each	
increase	by	a	factor	of 2	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	of	“ways”)	
and	halves	the	number	of	sets	–
• decreases	the	size	of	the	index	by	1	bit	and
increases	the	size	of	the	tag	by	1	bit

31

Block offsetIndexTag

More	Associativity	(more	ways)

What	if	we	can	also	change	the	block	size?

Question
• For	a	cache	with	constant	total	capacity,	 if	we	
increase	the	number	of	ways	by	a	factor	of	2,	
which	statement	is	false:

• A:	The	number	of	sets	could	be	doubled
• B:	The	tag	width	could	decrease
• C:	The	block	size	could	stay	the	same
• D:	The	block	size	could	be	halved
• E:		Tag	width	must	increase

32

Total	Cash	Capacity	=

33

Associativity	*		#	of	sets		*		block_size
Bytes	=	blocks/set		*		sets		*		Bytes/block	

Byte	OffsetTag Index

C	=	N	*		S		*		B

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)

Clicker	Question:		C	remains	constant,	S	and/or	B	can	change	such	that	
C	=	2N	*	(SB)’	=>	(SB)’	=	SB/2

Tag_size =	address_size – (log2(S)	+	log2(B))	=	address_size – log2(SB)
=	address_size – (log2(SB)	– 1)

Second-
Level
Cache
(SRAM)

Typical	Memory	Hierarchy
Control

Datapath

Secondary
Memory
(Disk

Or	Flash)

On-Chip	Components

RegFile

Main
Memory
(DRAM)Data

Cache
Instr
Cache

Speed	(cycles):								½’s												 1’s																	 10’s												 100’s							 1,000,000’s

Size	(bytes):				 100’s			 10K’s																									M’s																				G’s																						T’s

34

• Principle	of	locality	+	memory	hierarchy	presents	programmer	with	
≈	as	much	memory	as	is	available	in	the	cheapest technology	at	the	
≈	speed	offered	by	the	fastest technology

Cost/bit:									highest																																																																													 lowest

Third-
Level
Cache
(SRAM)

In	the	news:	Intel	3D	Xpoint
• 375	GB	(2nd half	2017	1.5	TB)
• In	2015	announced	as	”1000	times	faster	than	
SSD”

• 500.000	IOPS	(very good value compared to SSD)
• very low latency (40	times	faster than SSD)
• For	Desktops:	16	and 32	GB	(44	and 80	USD)

35

36

• Transparently	integrates	into	the	memory	
subsystem	and	makes	the	SSD	appear	like	
DRAM	to	the	OS	and	applications

• Up	to	8x	memory	extension
• Low	latency	and	ultra-high	endurance

