
Mobile Robotics

Sören Schwertfeger / 师泽仁

Lecture 2

Review
• Definition Robot: A machine capable of performing complex tasks in the

physical world, that is using sensors to perceive the environment and acts
tele-operated or autonomous.

• Usually Industrial Robots are stationary.
• Most other Robots move.

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 2

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Where am I?
• GPS, Guiding system
• Build a map: Mapping
• Find position in a map:

Localization
• Both: Simultaneous Localization

and Mapping (SLAM)
• Where is my goal?

• What is the goal: map or object
recognition

• Where is that goal?

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 3

• Autonomous mobile robots
move around in the
environment. Therefore ALL of
them:
• They need to know where they

are.
• They need to know where their

goal is.
• They need to know how to get

there.

• Different levels:
• Control:

• How much power to the motors to
move in that direction, reach desired
speed

• Navigation:
• Avoid obstacles
• Classify the terrain in front of you
• Predict the behavior (motion) of other

agents (humans, robots, animals,
machines)

• Planning:
• Long distance path planning
• What is the way, optimize for certain

parameters

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 4

Most important capability
(for autonomous mobile robots)

How to get from A to B?
(safely and efficiently)

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 5

Outline
• Software

• Software Design
• Programming Review
• Robot Operating System (ROS)

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 6

How to get from A to B?

How to program an intelligent ROBOT
to go from A to B?

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 7

General Control Scheme for Mobile Robot Systems

Sensing Acting

Information
Extraction

Vision

Path
Execution

Cognition & AI
Path Planning

Real World
Environment

Localization
Map Building

M
ot

io
n

C
on

tro
l

N
av

ig
at

io
n

Pe
rc

ep
tio

n

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 8

With material from Roland Siegwart and Davide Scaramuzza, ETH Zurich

Raw data

Environment Model
Local Map

Position
Global Map

Actuator Commands

Path

How to get from A to B?

What are the components of a
ROBOT?

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 9

Overview Hardware

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 10

Speed sensor
Quadrature Encoding

Sensors:
IMU (Gyro,

Accelerometer),
Cameras, Laser
Range Finders
(LRF), GPS,
Microphone

Micro Controller

Battery,
Power
DC/ DC

Mechanics:
Structure, Housing,

Tracks, Flippers

Switches,
LEDs, Plugs

Storage
(Hard Disk) Networking

Battery
managementServos …

Micro Controller:
Real time,

PWM signals,
Analog In- and Output
Digital In- and Output

Motor Motor Driver/
Motor ControllerWheel

Motor Motor Driver/
Motor Controller

Wheel,
Track,
Joint,

Finger, …

Micro Controller

Other RobotsOperator Interface

Computer:
Sensing,

Computing,
Storage

Computer:

Control and Navigation
Planning

Perception
Vision

Artificial Intelligence

Robot Software: Tasks/ Modules/ Programs (ROS: node)

Support

• Communication with Micro
controller

• Sensor drivers
• Networking

• With other PCs, other Robots, Operators
• Data storage

• Store all data for offline processing and
simulation and testing

• Monitoring/ Watchdog

Robotics

• Control
• Navigation
• Planning
• Sensor data processing

• e.g. Stereo processing, Image rectification
• Mapping
• Localization
• Object Recognition
• Mission Execution
• Task specific computing, e.g.:

• View planning, Victim search, Planning for
robot arm, …

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 11

Software Design
• Modularization:

• Keep different software components separated
• J Keep complexity low
• J Easily exchange a component (with a different, better algorithm)
• J Easily exchange multiple components with simulation
• J Easily exchange dada from components with replay from hard disk instead of live sensor

data
• J Multiple programming teams working on different components easier
• Need: Clean definition of interfaces or exchange messages!
• Allows: Multi-Process (vs. Single-Process, Multi-Thread) robot software system
• Allows: Distributing computation over multiple computers

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 12

Programming review
• Process vs. Thread
• C++ Object Orientation
• Constant Variables

• const-correctness
• C++ Templates
• Shared Pointer

• Objective:
• Prerequisites for understanding

ROS.
• Understand how we can efficiently

retrieve and transfer data in ROS.

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 13

Process
• Execution of one instance of a computer program
• Virtual memory:

• Contains only code and data from this program, the libraries
and the operating system

• Other processes (programs) can not access this memory
(shared memory access is possible but complicated)

• Operating system gives each process equal amount
of processing time (scheduling) – if the processes
need it
• Good support from the operating system to give certain

processes higher or lower priority
• Linux console program to see processes: top

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 14

(From Wikipedia)

Multi-Threading
• In one process, multiple threads =>

parallel execution
• J Code and Memory is shared =>

easy exchange of data, save mem.
• K Synchronization can be tricky

(mutex, dead lock, race condition)
• L If one thread crashes, the whole

process (all threads) die

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 15

(from http://www.tutorialspoint.com)

Processes and Threads in Robotics - Messages
• Both approaches have been implemented!
• Both are used and important!
• Robot Operating System (ROS): Multiple Processes:

• Each component runs in its own process: called node
• A node can have multiple threads => faster computation
• Nodes communicate using messages
• A node can send (publish) messages under different names called topic
• Nodes can listen to (subscribe) messages under different topics
• The messages are transferred over the network (TCP/IP) => multiple computers work

together transparently
• L Messages are serialized, copied and de-serialized even if both nodes on the same

computer => slow (compared to pointer passing)
• Optimization: Nodelet: run different nodes in the SAME process => pointer passing => fast

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 16

ROS nodes
• ROS core: keep track which nodes are running and their topics
• Show all nodes and topics in a graph: rosrun rqt_graph rqt_graph

• /rosout : special node for output on console (standard out)
• /turtlesim1/sim, /turtlesim2/sim : simulated robots (nodes) (multiple nodes

per simulated robot)
• /command_velocity : set the speed of a robot (topic)
• Node /turtlesim1/sim publishes on topic /turtlesim1/turtle_pose

• Node /mimic subscribes to topic /turtlesim1/turtle_pose

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 17

Object Oriented (OO) Programming
• C++ is OO … C is not
• Object: have data fields (variables) and associated procedures (methods)
• Instance of an object: created with keyword new
• Object: Abstract data type: has data and code

• encapsulation and information hiding: private variables not visible for outside code – interact
through the methods

• Methods can be private, too: can only be used by (methods of) the object itself
• Inheritance: code-reuse through re-use of variables and methods from base class. Child

class extends/ modifies functionality
• Polymorphism: Base class defines interface to some functionality (e.g. Method for getting a

camera image). A child implements the actual code for a specific use case (e.g. A certain
driver for a specific camera) – this is NOT how ROS works
• ROS uses messages as “interface”

• Objects have destructors for deletion/ cleanup

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 18

Object Orientation: Example

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 19

(From Wikipedia)

Constant Variables
• Declare variables that do not change

(anymore) in the code: const
• Works for variables and objects
• Const Objects:

• Only methods that do not change any
variable of the object may be called =>

• Those methods have to be declared const
• Used for program-correctness
• Especially for multi-threading:

• Share the data (e.g. image)
• Make it read only via const
• => no side-effects between different

threads

1. const int x = 5; // x may not be changed
2. int * someValue = &x; // pointer –

compilation error!!
3. const int * pointy = &x; // good
4. *pointy = 8; // error – pointing to const!
5. int y = 4;
6. pointy = &y; // from non const to const is

always possible!
7. const int * p2 const = &y; // pointing to

const variable and p2 is also const
8. p2 =&x; // error – p2 is const

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 20

QUESTIONS REGARDING HW1?
Bring your HW1 with you next Tuesday!

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 21

C++ Templates
• Functions and classes that operate with generic types
• Function or class works on many different data types without rewrite

• template <typename T> int compare(T v1, T v2);

• Type of T is determined during compile time => errors during compilation (and not run-time)
• Any type (type == class) that offers the needed methods & variables can be used
• Usage: compare<string>(string(“string number one”), “hello world”);

• Explicit declaration: typename T = string
• typename T can (most often) deducted by the compiler from the argument types

• Class template:
• template <typename T> class myStuff{

T v1, v2;
myStuff(T var1, T var2){ v1 = var2; v2 = var2; }

};

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 22

Template example

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 23

Shared Pointer
• C++ Standard Library (std): heavily templated part of C++ Standard (many

parts used to be in boost library)
• Pointer: address of some data in the heap – in the virtual address space
• Space for data has to be allocated (reserved) with: new
• After usage of data it has to be destroyed to free the memory: delete
• Problem: Data (e.g.) image is shared among different modules/ components/

threads. Who is the last user – who has to delete the data?
• Shared pointer: counts the number of users (smart pointers); upon destruction of last user

(smart pointer) the object gets destroyed : called “Reference counting”
• Problem: Shared pointer needs to know the destructor method for the pointer =>
• Shared pointer is a templated class: Template argument: class type of the object pointed to
• Shared pointer can also point to const object!

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 24

Shared pointer example

• Earlier, shared_ptr used to be in boost
• Excerpt from ROS message of type “String” :

• typedef: create another (shorter) name for a certain type
• Our type: a shared pointer that points to a (complicated) String object

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 25

Review for ROS
• Different components, modules, algorithms run in different processes: nodes
• Nodes communicate using messages (and services …)
• Nodes publish and subscribe to messages by using names (topics)
• Messages are often passed around as shared pointers which are

• “write protected” using the const keyword
• The shared pointers take the message type as template argument
• Shared pointers can be accessed like normal pointers

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 26

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 27

ROS Tutorial: Listener

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 28

Messages
• Publisher does not know about subscribers
• Subscribers do not know publishers
• One topic name: many subscribers and many publishers possible, BUT: same

message type (determined by the first publisher)!
• List all topics in the current system:

• rostopic list
• Other commands: rostopic echo, rostopic hz, rostopic pub ,
rostopic pub /test std_msgs/String “Hello World!"

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 29

Create own message: Text format
• Types:

• int8, int16, int32, int64 (plus uint*)
• float32, float64
• string
• time, duration
• other msg files
• variable-length array[] and fixed-length array[C]

• Save in folder “msg”, start with big letter, end with “.msg”

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 30

Services
• ROS service: send a “message” or command to service provider, wait for reply
• Text format: First message for request

• Separation: three dashes
• Then message for response

• A call to a service blocks

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 31

Compiler, Linker
• Standard in Linux: gcc: GNU Compiler Collection
• Compiler: Create machine code out of programming language

• For C++ code: g++
• g++ -o helloworld -I/homes/me/randomplace/include helloworld.cc
• Options:

• -g - turn on debugging (so GDB gives more friendly output) -Wall - turns on most warnings
• -o <name> - name of the output file -c - output an object file (.o)
• -O to -O4 - turn on optimizations -I<include path> - specify an include directory
• -L<library path> - specify a lib directory -l<library> - link with library lib<library>.a

• Linker: Link the machine code with other machine code (provided by libraries)
• Static link library: executable includes the statically linked library
• Dynamic link library: upon execution the program is linked against the library: Multiple programs

will use the same code => save memory
• Program: ln
• Show dynamic linked libraries used by a program: ldd

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 32

Makefile, CMake
• Avoid typing g++ and ln
• Makefile:

• Commands for compiling and linking the program: “make” uses the file “Makefile”
• May provide additional commands like “make clean”
• Can be used to run arbitrary commands, e.g. to create pdf files from LaTeX

• Cmake
• Cross-platform Makefile generator
• Searches for dependencies (libraries, headers, etc.)
• Autoconfigure with “cmake .”
• “CMakeLists.txt”: specify which files to make, etc.

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 33

GIT: distributed revision control and source code management

• Every Git working directory is a full-fledged repository
• => can work without server, two repos can pull/ push from each other

• Working directory has a hidden .git folder in its root
• Automatically merges common changes in same files
• Non-linear development:

• Create branches, merge them
• Cryptographic authentication of history
• See Cheat Sheet

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 34

Recourses:
• http://wiki.ros.org/ROS/Tutorials/
• https://en.wikipedia.org/wiki/Object-oriented_programming
• C++: http://www.cplusplus.com/doc/tutorial/

• http://www.cplusplus.com/doc/tutorial/templates/
• https://en.wikipedia.org/wiki/Smart_pointer

• http://en.cppreference.com/w/cpp/memory/shared_ptr
• http://www.cprogramming.com/tutorial/const_correctness.html

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 35

Cheat Sheets

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/bash_cheat_sheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/gitCheatCheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/vim-cheat-sheet.png

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/regular_expressions_cheat_sheet.png

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/cpp_reference_sheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/ROScheatsheet.pdf

• http://sist.shanghaitech.edu.cn/faculty/soerensch/mobile_robotics_2014/cheat_cheets
/ROS-Cheat-Sheet-Landscape-v2.pdf

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 36

Unix File System
• File types: regular, directory, link, (sockets, named pipes, block devices)
• Slash “/” instead of backslash “\” for folders - distinction between small and big letters!
• One file system tree, beginning with root: “/”

• Mount partitions (areas of the hard disk): any folder can be the mount point, e.g.:
/media/<user_name>/usbDiskName

• Home folders of different users in “/home/<user_name>”
• Hidden files and folders: begin with a dot “.”
• In Unix/ Linux, (almost) everything is a file: devices, partitions, …in “/dev”, e.g.

“/dev/video0”
• Show files: “ls”; more info: “ll”; human readable: “-h” – e.g. “ll -h”
• Free space: “df -h”
• Symbolic links (symlink): point to another file or folder. Create with “ln -s from to”

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 37

Overview

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 38

From: http://devopsbootcamp.readthedocs.org/en/latest/06_boot_filesystem.html

Misc
• Files have access rights: users and groups and others

• r: read w: write x: execute (for directories: go in)
• chmod a+w => all (three) are allowed to write
• chmod o-r => others are not allowed to read

• chown user:group file_name_or_dir change ownership
• Super user: root: can access all files
• sudo <command>: execute a command as root
• sudo su: (one way) to become root
• Compress files: zip + rar for Windows => no support for permissions/ symbolic

links
• tar : tape archive (lol) – sequentially store files and folders (no compression)
• gzip : compress one file
• combine: tar gzip: archive.tar.gz

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 39

Bash: GNU Unix Shell
• Program that runs in your terminal – executes your commands
• Keyboard up: go through history of last commands
• Tab-complete: any time, press tab to complete the command/ path/ file-name/ … - if a

unique solution exists; double tab for list of possible options
• Control C to tell program to stop; Control | to quit;
• Control Z to stop (pause) program: fg to run in foreground again, bg to run in

background, kill %1 to kill the last program (in background)
• Start program in background: command &
• Pipe: send output of program 1 as input to program 2: prog1 | prog2; e.g. “ll /dev |

less”
• Send standard output to file use “>” e.g.: “ll > file.txt”
• Wildcards: “*” matches anything with any length, “?” matches any one char, e.g.

“ll /dev/tty*”

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 40

.bashrc
• .bashrc is executed every time a new shell (terminal) is opened
• Execute by hand: “source ~/.bashrc” or “. ~/.bashrc”
• “~” is replaced by your home directory
• Setup variables, e.g.:

• alias df='df -h' # when calling df, acutally "df -h“ is called – human readable
• alias ..='cd ..' # executing "..“ will go one level up in the file tree
• Option: setup ros path always here: “source ~/my_ws/devel/setup.bash”

• Edit input.rc to search history of commands with page up, down:
• “sudo vi /etc/inputrc” – uncomment “# alternate mappings for "page up" and "page down" to

search the history”

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 41

vi: editor for the console
• Command mode (press escape) and input mode (press i)
• Install vim for more comfort: sudo apt-get install vim
• Command mode:

• Press escape to enter command mode
• “: w” write file
• “: q” quit
• “: wq” write file and quit
• “: q!” quit without writing changes to file
• Press “d” to delete a char; press “dd” to delete a line
• Press “/” and enter a regular expression to search
• Press “n” or “N” for next, previous search result

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 42

ssh: secure shell
• Login to remote computer, using encrypted communication
• sudo apt-get install ssh : Installs the ssh server
• Usage: ssh user@host e.g.: ssh schwerti@robotics.shanghaitech.edu.cn
• Option: -X forward X-server: see GUI of remote application on your screen (-Y

without encryption)
• ssh-keygen : generate authentication keys – public and private keyfile in .ssh
• ssh-copy-id : copy your public key to remove hose => no login needed

anymore!
• Copy files: scp [-r] <from> <to>

• Either from or to can be remote host: [user@]host:path, e.g. scp hw2.tar.gz
test@robotics:homeworks/

• -r: recursive – copies whole directories

Mobile Robotics ShanghaiTech University - SIST - 20.11.2015 43

