
Mobile Robotics Lab Spring 2015

Automatic Landing on a Moving Target

Chen Minhua, Guo Jiangtao

July 1, 2015

1 Introduction

Autonomous landing for Unmanned Aerial Vehicle (UAV) is an important as-
pect in the field of UAV research. If you want to build a autopilot plane, you
have to let it use automatic landing method to land itself on particular target.
Automatic landing can also be used in forced landing when a plane come up
with some problem like running low on battery. it can also be applied in military
helicopters which need to landing in some harsh environment. Currently, there
are some relative autonomous landing methods such as GPS (Global Position
System) and INS (Inertial Navigation System). However, if the landing environ-
ment is very bad, these methods won’t be robust enough. As computer vision
is developing in a high speed, some approaches based on computer vision have
been widely applied in UAV automatic landing research. We can also combine
these methods together to get better performance.

In addition, nowadays, the inexpensive quadricopter toys becoming widely
available and usually these toys also provide better sensing features and not bad
computational power. In our project, we plan to use the AR.Drone, made by the
Parrot Inc,to land on some special marker on the ground or some moving plane.
The AR.Drone is a high-tech low cost flying toy with powerful hardware and
sensors including 1GHz 32 bit ARM Cortex A8 processor with 800MHz and also
video DSP, 1GB DDR2 RAM at 200MHz two cameras(one of the camera is 720p
HD Camera), WIFI bgn, 3 axis gyroscope, accelerometer, and magnetometer,
pressure sensor, ultrasound sensors and many other properties1.

2 State of Art

In Allen C. Tsai, Peter W. Gibbens and R. Hugh Stone’s paper[7], they present
a method to estimate the full 3D position information of a UAV by integrating
visual cues from one single images with data from an Inertial Measurement
Unit (IMU) under the Kalman Filter formulation. They use two or more frames
of image data with feature enriched information in the image to estimate the

1for more details about the AR.Drone, you can find the website here.

1

http://cdn.ardrone2.parrot.com/


Figure 1: The AR.Drone 2.0 in our project, with the front camera modified to
toward down

3D position of the UAV. They use a rather conventional type of landing pad
with visual features extracted for use in the Kalman filter to obtain optimal 3D
position estimates.

In Daquan Tang, Fei Li, Ning Shen, Shaojun Guo’s paper[6], they present a
vision-based method for attitude and position estimation, based a few feature
points distributed on the ground arbitrarily. In their methods, calculating the
attitude and position relative to runway is the core. Firstly, the coordinates in
the camera frame of the feature points was acquired with the N-point algorithm;
secondly, with the orthogonalization method, the rotation matrix and the trans-
lation vector between the camera frame and the runway frame were acquired.
They also used least-median-squares (LMS) algorithm to diminish the influence
of noise and to improve the robustness.

In Patrick Benavidez, Josue Lambert, Aldo Jaimes and Mo Jamshide ’s pa-
pers [1] and [2], they present control system for an UAV which provides aerial
support for an unmanned ground vehicle(UGV), the UGV acts as a mobile
launching pad for the UAV. the UAV provides additional environmental im-
age feedback to the UGV. They also use the Parrot AR.Drone2.0 quadcopter
as the UAV hardware because of ”its agile flight and video feedback capabili-
ties”. Their paper presents design and simulation of the fuzzy logic controllers
for performing landing, hovering, and altitude control. Image processing and
Mamdani-type inference, which is the most commonly seen fuzzy methodology
proposed in 1975 by Ebrahim Mamdani, are used for converting sensor input
into control signals used to control the UAV.

In Nick Dijkshoorn’s paper[4] and his master thesis[3], he presents a real-
time SLAM approach for affordable MAVs with a down-looking camera. And

2



the approach has been validated with the AR.Drone quadrotor helicopter. His
development is partly based on simulation which requires both a realistic sensor
and motion model. His thesis describe how a visual map of the environment
can be made. The visual map consists of a texture map used for human naviga-
tion and a feature map used by the AR.Drone to localize itself. He presents a
novel approach to robustly recover the translation and rotation between a cam-
era frame and the map. An experimental method to create an elevation map
with a single airborne ultrasound sensor is presented in the thesis. His experi-
ments validated that his presented methods work in a variety of environments.
Furthermore, the impact of the camera resolution and various pose recovery
approaches are investigated in his thesis.

3 Approach

Described in the introduction of above, we know that what we want to do is
to control the unmanned aerial vehicle(UAV) stably and land the UAV to some
special target panel. For example the target panel has some special markers
on it, such as QR code, or the Augmented Reality markers(AR tag)2. In this
project, we want to consider the automatic landing problem and find an efficient
and useful methods for aircraft. We use AR.Drone as the air platform and
try to land it on a fixed and moving target. Firstly, we need to guarantee
that the AR.Drone can recognize the landing target correctly. We use the AR
tag to achieve this function. Secondly, We should let the AR.Drone try to
get to the desired place and hover stably above the landing target. Then,
according to the information we get from the down look camera in the AR.Drone
image(we have made some hardware change to let the original forward look
camera on AR.Drone 2.0 look down to get better image resolution), we can
calculate the relative coordinates with respect to the landing platform and move
the AR.Drone above the target stably. PID controller is used to keep AR.Drone
stable moving. Finally, we can land the AR.Drone on the target smoothly and
stably.

The hardware in our project:

• AD.Drone 2.0

• Laptop with Ubuntu 14.04 and ROS indigo

• Turtlebot(if available, can be used as the moving target. In our project,
not used yet.)

The software in our project:

• ROS indigo

• Ubuntu14.04

2For more detail about the Tag, here is the website, ATT LAB

3

http://cdn.ardrone2.parrot.com/
http://www.ros.org/
http://wiki.ros.org/Robots/TurtleBot
http://www.ros.org/
http://www.ubuntu.com
http://virtual.vtt.fi/virtual/proj2/multimedia/index.html


• AD.Drone 2.0 onboard drivers

• AR tag ros package ar track alvar

• ros package ardrone autonomy and ardrone autonomy Lab, AR.Drone
2.0 driver ros wrapper

• ros package tum ardrone.a very nice AR.Drone project, and give us
much help, such as the PID controller, EKF, odometry estimation.

3.1 Camera calibration

Before everything starts, the first thing is to calibrate the camera. In following
parts, camera info will be used in the marker recognition package. So, we refer
to the documents of AR.Drone driver ardrone autonomy and ros camera
calibration. Finally, ros camera calibration tools Camera Calibrator3 are
used in our project.

Here is the command we have used in our project.

$ rosrun camera_calibration cameracalibrator.py --size 8x6
--square 0.0245 image:=/camera/image_raw camera:=/camera

After running this tools, the camera calibration matrix will be got, Here are our
calibration data and has been put into the ros ardrone front.yaml file in
the folder /.ros/camera info/.

image_width: 640
image_height: 360
camera_name: ardrone_front
camera_matrix:

rows: 3
cols: 3
data: [569.883158064802, 0, 331.403348466206, 0,

568.007065238522, 135.879365106014, 0, 0, 1]
distortion_model: plumb_bob
distortion_coefficients:

rows: 1
cols: 5
data: [-0.526629354780687, 0.274357114262035,

0.0211426202132638,-0.0063942451330052, 0]
rectification_matrix:

rows: 3
cols: 3
data: [1, 0, 0, 0, 1, 0, 0, 0, 1]

projection_matrix:
rows: 3
cols: 4
3for more detail, you can find on the ros wiki here

4

http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/ardrone_autonomy
https://github.com/AutonomyLab/ardrone_autonomy/tree/autolab
http://wiki.ros.org/tum_ardrone
http://wiki.ros.org/camera_calibration


data: [463.275726318359, 0, 328.456687172518, 0,
0, 535.977355957031,134.693732992726, 0, 0, 0, 1, 0]

Then, we set up the whole system and do some test about the distance
estimation. In table1, show us the test results. In the table, we can see that,
the row of origin should be the origin point (0,0,0), but we can see not all
be so, there are really errors. And we also find that the roll, pitch and yaw of
the AR.Drone are not exactly be the right value for this, we have try best to let
the three angle be the right value. Such as if we put the AR.Drone horizontal
and the roll and pitch should be about −180◦ or about 0. However, we try our
best to change the position of AR.Drone to make the value right but failed.
Finally, we find that these errors are the system errors of the AR.Drone sensors,
And later, the AR.Drone can fly back and be under control with these errors.
But we should notice that the distance is different in test 1, test 2 and test 3.
The left down and right down corner is the card corner in test 3 because of the
small value of the distance rather than that in test 1 and 2 the corner is marker
corner, as shown in figures below the whole paper.

3.2 Marker recognition

Before the drone can land on the target, the first thing is to localize itself with
respect to the environment in the AR tag frame. So, AR markers are used to
implement an indoor localization system with respect to the known markers in
our experiment.

The AR markers are augmented reality markers which are characterized by
different patterns of black and white squares arranged in grid. Such markers
are well suited for pattern recognition approaches and can easily be detected
with some known software, such as the ALVAR Tracking Library4 which is a
C++ software library for creating virtual and augmented reality application
and is maintained by the VTT ALVAR Tracking Library. In addition, for this
library, there is a Robot Operating System(ROS) wrapper for it, which is called
ar track alvar package5. In this package, it has 4 functionalities, generating AR
tag of varying size, resolution, and data/ID encoding, identifying and tracking
the pose of the individual AR tags, identifying and tracking the pose of ”bun-
dles” consisting of multiple tags, and using camera images to automatically
calculate spatial relationship between tags in a bundle.

In our project, with the help of the ROS package ar track alvar, we can
get the Pose of AR tag including the position (x, y, z) and the rotation angle
denoted by the quaternions of AR tag wrt. camera frame. The points in the
AR tag frame and camera frame respectively denoted as AP and CP, So we get

4the official website about the library:here
5the website is here

5

http://virtual.vtt.fi/virtual/proj2/multimedia/index.html
http://wiki.ros.org/ar_track_alvar


Table 1: Camera calibration test for the height and distance test results, in the
table, the position is w.r.t. marker in camera frame, the every test situation is
below the whole report.The AR tag marker diameter is 0.132 meters, so the abs
coordinates of four corner is all 0.66 meters. And the ”big left down ” and the
”big right down” is left and right down corner of the big card. We have show
this situation clearly in the below figures.

Height Test 1 0.81m Test 2 0.51m Test 3 1.21m
pose (x,y,z,roll, pitch, yaw)
units (m,m,m, ◦,◦,◦)

origin
(0.02,0.02,0.81)

(-176.95,1.52,0.83)
(0.00,-0.00,0.51)

(-174.55,0.09,-0.45)
(0.03,0.04,1.21)

(-176.89,1.15,-0.04)

corner 0(left down)
(-0.08,-0.11,0.81)

(-172.01,-1.80,-0.14)
(-0.06,-0.09,0.51)

(-172.72,-0.27,0.05)
(-0.06,-0.30,1.21)

(-171.22,3.61,-0.13)

corner 1(left up)
(0.04,0.05,0.81)

(-174.20,5.97,-0.00)
(-0.05,0.03,0.51)

(-171.21,0.41,0.04)
(0.04,0.12,1.21)

(-178.32,3.36,0.03)

corner 2(right down)
(0.12,-0.10,0.81)

(-172.91,2.83,-0.08)
(0.08,-0.07,0.51)

(-174.46,0.92,-0.18)
(0.24,-0.34,1.20)

(-170.03,6.17,0.12)

corner 3(right up)
(0.14,0.05,0.81)

(-174.07,4.67,0.03)
(0.10,0.05,0.51)

(-173.73,2.78,0.25)
(0.22,0.01,1.21)

(-173.45,5.78,-0.03)

error estimation (m,m) (m,m) (m,m)

corner 0(left down) (0.02, 0.02) (0,0)
(0.03, 0.04)

(”big left down”)
corner 1(left up) (0.02, 0.05) (0,0.03) (0.08,0.07)

corner 2(right down) (0.06, 0.04) (0.02, 0.01)
(0.1, 0.11)

(”big right down”)
corner 3(right up) (0.08, 0.01) (0.04, 0.01) (0.16, 0.05)

6



AP = A
CT

CP

= A
CT
−1CP

= C
AT

CP

(1)

Where A
CT and C

AT represent respectively the transform from AR tag to camera
frame and from camera frame to AR tag frame. And, from the ROS package
ar track alvar, we get the point position wrt. camera frame, so we can
easily derive the position wrt. AR tag frame from the above Eq1. In the code,
thanks to the ROS transform tools, these trivial but important things has been
done efficiently.

Here, for comparison purpose, we also use the QR code to provide the in-
formation about the helipad to the UAV. QR codes have become common in
consumer advertising and every usual life. The QR code will give the actual
size of the the QR code and also the number about the helipad to distinguish
between other helipad. Also, we will get the QR code from the rgb camera
below the AR.Drone. With the help of the Zbar library in Linux, we can get
the information in the QR code.

Comparing AR tag with QR code, we can know that, the QR code can
give us more information about itself like the diameter about itself. When we
use the AR tag, we can just get the QR code diameter from the information
resolved from the image processing rather than set the fixed diameter of the
QR code before using it. This is a better aspect than the AR tag. However, in
the image processing, we find that the Zbar library processes and give out the
information of QR code has much more delay than the AR tag processing. Thus
we also know from the ros AR tag package that the recognition time cost will
not dramatically cumulate with the AR tag number increasing. So one of the
AR tag usage is that put a bundle of AR tag on an object, when the robot just
get the information of parts of the whole bundle of AR tag, it can also recognize
the object and do some action.

3.3 UAV and moving target control

In our project, we use the AR.Drone as the UAV. Actually the images from the
down-looking camera(some hardware hacks have been done) of the AR.Drone
have been used. Once we get the frames of the image, let it transmit the images
via WiFi to the control Laptop located on the ground. Of course, based on these
image frames, the control node will analysis these frames, do the landing target
localization on the Laptop, and send the commands back to the drone. And also,
we know that we can use the ROS (robot operating system) to operate the UAV.
With the help of ROS, we can easily control the UAV. In the ROS wiki, we find
the tum ardrone package. This package builds on the well known monocular
SLAM framework PTAM presented by Klein & Murray in their paper[5].

In detail, based on the every a few milliseconds received image frame, we
set up a controller to calculate the distance between the AR tag center and the
image center along x and y coordinates. Next, we use the PID controller to

7



keep more stable velocity control. Then publish the control command to the
AR.Drone for moving the AR.Drone close to the image center. The target we
have used in our experiments are the AR tag marker on the board. The actual
marker in the experiment has show in the figure 2.

(a) ardrone track the marker (b) AR tag recognition window

Figure 2: AR tag in experiments

3.4 Stable UAV

In our previous project, we find it’s usually unstable in the control system of
AR.Drone, so we should make some improvement for the stable control of drone.
Here, we know the most common used stable controller is proportional integral
derivative controller (PID controller), which is a control loop feedback mecha-
nism widely used in industrial control system. A PID controller calculates an
error value as the difference between a measured process variable (in our project,
it is the horizontal distance between the camera center and the AR tag center)
and a desired set point (the position what we want)6. In the velocity control
progress, we use the PID controller to make velocity control more accurate and
stable.

In our project, we set the formula as

Ut = KP (Xdes −Xt−1) + KD(Ẋdes − Ẋt−1) + KI

∫ t

0

(Xdes −Xt′−1)dt′ (2)

where the Ut, Xt−1, Xdes are respectively out put of PID controller, the position
at time t−1, and the desired position which set to (0, 0) in our experiments. The
Ẋ denotes the respectively velocity at different time. the KP ,KI ,KD respec-
tively represent the proportional integral derivative parameters which should
be determined in the actual usage and depends on the system. In our system,
because we want to move the drone just above the AR tag, so here we set the
desired position as (0, 0). we just apply the PID controller along x,y coordinates
to control the vx, vy velocity.

6for more detail refer to wikipedia PID controller

8

http://en.wikipedia.org/wiki/PID_controller


3.5 The whole system

The overview of our system is as follows:

• First, we let the UAV search and detect the static target with the markers
(AR tag or QR code) on the ground from the every frame of the rgb
camera.

• Second, let the UAV move slowly to the above of the target and follow it
tightly and stably, with the help of height from the rgb image based on
the ROS package ar track alvar.

• Then, when the UAV locks the target, keeping locking the target, let the
UAV move down slowly until to some close height such as 0.5 metres in
our experiments.

• Final, correct the target marker in the center of the image and move down
stably and slowly until landing on the helipad.

The whole system structure is shown in the figure 4a. In this flow chart, we
can get this control sequence.

• First start and test the keyboard control node in the our project pack-
age. we have provide this node to control the drone with keyboard. The
commands are as follow:

i,k,j,l: for forward, backward, left, right,
value = 0.3
q,a: for up, down, value = 0.4
blank space: for stop and hover.
h: for hover
t,d: for takeoff and land

• Second, drone get the image frame from camera, image processing, no
marker, hover and search the marker. if yes, go ahead.

• Third, drone get the marker, do the calculation to get the position (x, y, z)
wrt. AR tag frame and the distance (∆x,∆y) between the image center
and AR tag center.

• Forth, make decision about how to do next step, if close enough, publish
command to move the drone down. if no, move the drone closer.

• Fifth, we should get the height of drone again, when moving down, the
drone should check the height incessantly to decide what to do next step.
if the height lower than the threshold (0.5 meters, you can set your own
value), land the drone. if not, back to step 2.

9



Figure 3: The whole system topic and node relationship

(a) The whole system structure (b) The AR.Drone follow marker in ex-
periment

Figure 4: AR tag in experiments

10



In addition, the figure 3 shows the relationship between our topic and the
drone driver. The node Robot landing ar tag is our main node, the node
tbk 1434802701529968414 is the keyboard control node in our project.
From the node relationship, we can see that our node use the image node
/ardrone/image raw for image information and data node /ardrone/navdata
for sensors data. And our main node publish command to the topic /cmd vel
to control the drone. The node /ardrone driver and /ar track alvar
is the ROS drone driver package ardrone autonomy node and the AR tag
recognition package ar track alvar.

4 Experiments and Results

What we want to do is to land the UAV to the moving target. So we do some
experiments to test our result. In our experiments, about the moving target,
we move the marker on board manually rather than use the moving turtlebot.

• The first thing is to recognize the target. We hold the UAV to turn around
to search the target marker(the AR tag and the QR code), recognize the
marker on the fixed ground and give us the information about the marker.
So we can compare the distance from our code calculation and the real
value measured with tape.

• Let the UAV use the information to calculate the coordinate of target to
prepare for landing.

• Test the stable hovering of the drone with the PID control. For this
purpose, let the UAV flying above the fixed marker lasting for 10 min-
utes, compare the input velocity and the measured velocity from the ROS
AR.Drone driver topic navdata, calculate the errors.

• Test the UAV flying above the fixed target stably, we should manually
measure the error between the camera center and the image center of the
marker.

• Test landing on the fixed target slowly and stably.

• Test the searching target process of drone.

• Test the searching and landing process of drone.

• Compare the effect on the flying stability of the drone of different markers,
AR tag and QR code, flying stability of drone with two kinds of markers
will be compared. The above tests all should be tested and measured.

Above is what we want to do the test and finally we do test them. For
example the figure 2a and figure 4b are the picture of drone in the experiments.
Finally, we can let the drone hover on the marker, follow the marker moving
stably, and land on the marker. The detailed results what we get are here:

11



• We compare the results from the main node, we find the distance estima-
tion has not little errors. this results have been show in the table 1.

• Our node can achieve the marker recognition quickly and stably, and also
give us the position of the camera w.r.t. AR tag marker.

• The PID controller do improve the stability of the drone movement. And
we finally give the parameters are in the code.

• The drone can last for a long time hovering above the marker and don’t
lose the marker.

• When moving the marker manually, our node can follow the marker mov-
ing stably, but also has some little wobble.

• finally, the drone can recognize the marker and follow the marker, then
land on the marker slowly.

Comparing the AR tag marker and QR code, we find that the AR tag recog-
nition is fast, thus in our project, it’s better to use the AR tag than the QR
code. And about the AR tag, we can also try to use bundles of AR tags to get
more wide sense. However, it also has some drawbacks like the information in
one AR tag is just the ID about itself rather than that strings in the QR code.
And in our experiments, AR tag recognition has better performance including
marker recognition, fast calculation than QR code. The QR code are better
than AR tag in some aspects including more information about target. How-
ever, the distance calculation between the image center and the marker center
and the height estimation still need continue to improve.

5 Future Development

Above all, we have achieve the basic project target including marker recogni-
tion, marker above hovering, mobile marker following, and landing drone on the
mobile marker. And also, we again verify the assumption of marker based nav-
igation of UAV landing. However, what we done in our project still has much
to improve.

• For the stability of drone control, PID controller has been used in our
project. But we still has some work to do about the accurate controller
such as try some other fuzzy logical controller.

• Because of the draft of the drone and the errors in the sensors, we try
to use the marker as the visual navigation ”sensors”. But if the ”visual
sensors” still has much errors, then the controller still does wrong thing
and sends right command. So the next thing must be done is to improve
the visual feedback data accuracy. Such as improving the QR code height
calculation method and improving the AR tag marker height estimation
with our own algorithm.

12



• In our project, the visual feedback just has a limit ability to feedback,
because of the view limitation of cameras. if the camera lost the marker,
then the drone just has simple searching strategy or just hover there. So
in this situation, the visual feedback will fail. And this problem is really
problem especially when the drone moves down and down, the problem
will be more and more apparent. In our project, we dose not calculate the
global position of the drone. So it’s much necessary for us to find some
method to do estimation of global position. Here the traditional way is to
do the global position estimation from the odometry. In our project, This
also can be done to improve the performance.

• Finally, for global position of drone, we also can try to use some other
sensors or features. The former is that kinect can be used for the global
position estimation of moving target in the air. The later is that the
monocular SLAM(simultaneous localization and mapping) algorithms can
be used to locate the position of drone.

6 Time-line

2015/05/05–2015/05/16 Do some research, paper reading, and test the ROS
AR tag library. Implement and Test the PID controller of the drone con-
trol.

2015/05/17–2015/03/30 Again read and be familiar with the wiki about
ROS, AR.Drone driver. Recognize the markers, Test and calculate the 3D
coordinate of the target marker in the global frame.

2015/05/30–2015/06/09 Test the prototype of the project and Do improve-
ment.

2015/06/10–2015/06/19 Set up the whole system, do the final test, measure
the result, and write slides.

2015/06/20–2015/06/25 Do more test, finish the final experiments and re-
port.

7 Acknowledge

Firstly, we will thank professor Sören Schwertfeger for giving us much help in our
project, giving us a very nice introduction to the mobile robot, and providing us
with so nice hardware AR.Drone 2.0, turtlebot, and kinect(ASUS Xtion pro).
Secondly, I will thank to my partner ChenMinhua, without his help, i can not
finish the whole project. Thirdly, We will thank to our classmates ChenXiao and
ZhangChi. Thanks them for accompanying with us to studying such interesting.
Finally, We will also thank our University for providing us so nice place to study
and do experiments.

13



References

[1] Patrick Benavidez, Josue Lambert, Aldo Jaimes, and Mo Jamshidi. Landing
of an ardrone 2.0 quadcopter on a mobile base using fuzzy logic. In World
Automation Congress (WAC), 2014, pages 803–812. IEEE, 2014.

[2] Patrick J Benavidez, Josue Lambert, Aldo Jaimes, and Mo Jamshidi. Land-
ing of a quadcopter on a mobile base using fuzzy logic. In Advance Trends
in Soft Computing, pages 429–437. Springer, 2014.

[3] Nick Dijkshoorn. Simultaneous localization and mapping with the ar. drone.
PhD diss., Masters thesis, Universiteit van Amsterdam, 2012.

[4] Nick Dijkshoorn and Arnoud Visser. Integrating sensor and motion models
to localize an autonomous ar. drone. International Journal of Micro Air
Vehicles, 3(4):183–200, 2011.

[5] Georg Klein and David Murray. Parallel tracking and mapping for small
AR workspaces. In Proc. Sixth IEEE and ACM International Symposium on
Mixed and Augmented Reality (ISMAR’07), Nara, Japan, November 2007.

[6] Daquan Tang, Fei Li, Ning Shen, and Shaojun Guo. Uav attitude and
position estimation for vision-based landing. In Electronic and Mechani-
cal Engineering and Information Technology (EMEIT), 2011 International
Conference on, volume 9, pages 4446–4450. IEEE, 2011.

[7] Allen C Tsai, Peter W Gibbens, and R Hugh Stone. Terminal phase visual
position estimation for a tail-sitting vertical takeoff and landing uav via
a kalman filter. In Optics East 2007, pages 67640P–67640P. International
Society for Optics and Photonics, 2007.

(a) test1 left down (b) test1 left up

Figure 5: Markers

14



(a) test1 right down (b) test1 right up

Figure 6: Markers

(a) test1 origin (b) test2 origin

Figure 7: Markers

(a) test2 left down (b) test2 left up

Figure 8: Markers

15



(a) test2 right down (b) test2 right up

Figure 9: Markers

(a) test3 left down (b) test3 left up

Figure 10: Markers

(a) test3 right down (b) test3 right up

Figure 11: Markers

16


	Introduction
	State of Art
	 Approach
	Camera calibration
	Marker recognition
	UAV and moving target control
	Stable UAV 
	The whole system

	 Experiments and Results
	Future Development
	Time-line
	Acknowledge

