

Computer Architecture

Discussion 1

Number Representation

Yanpeng Zhao
Feb 23, 2016

Numeration systems

● Decimal code

– Positive integer
● 12510 = 1 * 100 + 2 * 10 + 5 * 1 = 1 * 102 + 2 * 101 + 5 * 100

– Fraction
● 25.4310 = 2 * 10 + 5 * 1 + 4 * 0.1 + 3 * 0.01

= 2 * 101 + 5 * 100 + 4 * 10-1 + 3 * 10-2

● Binary code

– Positive integer
● 8610 = 1 * 64 + 0 * 32 + 1 * 16 + 0 * 8 + 1 * 4 + 1 * 2 + 0 * 1

= 1 * 26 + 0 * 25 + 1 * 24 + 0 * 23 + 1 * 22 + 1 * 21 + 0 * 20

– Fraction
● Think about it.

Signed number representations

● Aim
– In computing, signed number representations are required

to encode negative numbers in binary number systems.

● Representation schemes
– Signed magnitude representation

– Ones' complement

– Two's complement

– ... …

● Require one bit to be used as the sign bit

Signed magnitude representation

● Scheme

– Setting the most significant bit to 0 is for a positive
number, and setting it to 1 is for a negative number.
The remaining bits in the number indicate the
magnitude (or absolute value).

● Example

– +1 = 0000 0001; -1 = 1000 0001

– Ranging from −12710 to +12710

– 00000000 (0) = 10000000 (−0)

Signed magnitude representation

● Scheme

– Setting the most significant bit to 0 is for a positive
number, and setting it to 1 is for a negative number.
The remaining bits in the number indicate the
magnitude (or absolute value).

● Example

– +1 = 0000 0001; -1 = 1000 0001

– Ranging from −12710 to +12710

– 00000000 (0) = 10000000 (−0)

Signed magnitude representation

Ones' Complement

● Scheme
– The ones' complement form of a negative binary

number is the bitwise NOT applied to it — the
"complement" of its positive counterpart.

● Example
– +1 = 0000 0001; -1 = 11111110

– Ranging from −12710 to +12710

– 00000000 (+0) = 11111111 (−0)

Ones' Complement

Two's complement

● Scheme
– In two's complement, negative numbers are

represented by the bit pattern which is one greater (in
an unsigned sense) than the ones' complement of the
positive value.

● Example
– +1 = 0000 0001; -1 = 11111111

– Ranging from −12810 to +12710

– Only one zero: 00000000 (0)

Two's complement

Why do we use Two's complement

● To involve sign bit in the calculation correctly
● Signed magnitude representation

– 1 - 1 = [0000 0001]S + [1000 0001]S = [1000 0010]S = -2

– Incorrect

● Ones' complement
– 1 - 1 = [0000 0001]O + [1111 1110]O = [1111 1111]O = [1000 0000]S = -0

– Meaningless sign bit since -0 = +0 in terms of the magnitude

● Two's complement
– 1 - 1 = [0000 0001]T + [1111 1111]T = [0000 0000]T=[0000 0000]S = 0

– -12810 = [1000 0000]T;

Fixed-Point Numbers

● Fixed-point number
– A fixed-point number consists of a whole or integral part and a

fractional part, with the two parts separated by a radix point
(decimal point in radix 10, binary point in radix 2, and so on)

● A fixed-point number has k whole digits and l fractional digits
–

–

● Value range
– The positive values ranges from 0 to 2k–1 - 2-l

– The negative values ranges from -2-l to -2k-1

Fixed-Point Numbers

Schematic representation of 4-bit 2’s-complement encoding for (1 + 3)-bit fixedpoint
numbers in the range [–1, +7/8].

Fixed-Point Numbers

● Fixed-point number
– The two important properties of 2’s-complement numbers, previously mentioned

in connection with integers, are valid here as well.
● The leftmost bit of the number acts a the sign bit
● The value represented by a particular bit pattern can be derived by

considering the sign bit as having a negative weight

● Example
–

– How to distinguish the negative ones from the positive ones, i.e, 1.01 of (2 + 2)-
bit fixed point numbers?

– 1.1T = (-1)1 * (0b0.0 + 1) where 0b0.0 = ~0b1.1

Fixed-Point Numbers

– How to convert a decimal fraction into the binary
fraction?

● Idea: Multiplied or divided by radix-2 means to move the
point to the right or the left by 1 bit. We only need to
record the rightmost bit to the left of the point every time
when we do multiplication or division.

● Have a try: -0.5 = 0b(?), 0.5 = 0b(?)

– Numerical error
● 0.410 = 0.01100110(0110)…

Addition and Subtraction

● Half-adder
– The circuit that can compute the sum and carry bits

is known as a half-adder (HA)

Truth table and schematic diagram for a binary half-adder. The carry output is the
logical AND of the two inputs, while the sum output is the exclusive OR (XOR) of
the inputs.

Addition and Subtraction

● Full-adder
– By adding a carry input to a half-adder, we get a

binary full adder (FA)

Truth table and schematic diagram for a binary full-adder. A full-adder, connected
to a flip-flop for holding the carry bit from one cycle to the next, functions as a bit-
serial adder.

Addition and Subtraction

● Have a try!
– -3 + 2; 4 + 3; 1.2 + 2.3; -0.5 +1.5

● Think about this.
Overflow occurs only in the addition of two positive numbers or negative
numbers, wouldn’t occur in the addition of the positive number and
negative number.

Multiplication and Division

● Not covered

Real Numbers

● Most real numbers must be approximated within the
machine’s finite word width. (i.e, sizeof(float) = 4)

● Drawbacks of fixed-point representation
– Not very good for dealing with very large and extremely small

numbers at the same time.

– The relative representation error due to truncation or rounding of
digits beyond the –8th position is quite significant for x, but it is
much less severe for y.

Float-Point Numbers

● Floating point
– Floating point is the formulaic representation that

approximates a real number so as to support a trade-off
between range and precision.

● Representation
– A number is, in general, represented approximately to a

fixed number of significant digits (the significand) and
scaled using an exponent

– Scientific notation: significand x baseexponent

– Significand ranges from 1(inclusive) to 2(exclusive)

IEEE floating point

● Single-precision floating-point format

● Double-precision floating-point format
exponent
(11 bit)sign

fraction
(52 bit)

63 52 0

sign exponent (8 bits) fraction (23 bits)

02331

0 0 1 1 1 1 1 0 0 0 1 0 = 0.15625
30 22 (bit index)

IEEE floating point

● Exponent bias
– The exponent is biased in the engineering sense of the word –

the value stored is offset from the actual value by the exponent
bias.

– To calculate the bias for an arbitarily sized floating point number
apply the formula 2k−1 − 1 where k is the number of bits in the
exponent.

– For a single-precision number, an exponent in the range −126 ..
+127 is biased by adding 127 to get a value in the range 1 .. 254
(0 and 255 have special meanings).

– For a double-precision number, an exponent in the range
−1022 .. +1023 is biased by adding 1023.

IEEE floating point

● An example
– Represent 38414.4 in double

● Integral part: 0x960E
● Fraction part: 0.4=0.5×0+0.25×1+0.125×1+……+0.5×（1 or 0） /n+…
● 38414.410 = b1001011000001110.0110011001100110011001100110011001100 (52 + 1 = 53 bits)
● Scientific notation: 1.0010110000011100110011001100110011001100110011001100×215

● Biased exponent: (15+1023=1038)10 = 10000001110
● Sign bit: 0
● Output:

– 0 10000001110 0010110000011100110011001100110011001100110011001100

● Try to convert the output above into decimal number
– Tip: take care of the significand

● How to represent -12.5?
– 1 10000010 10010000000000000000000

– Refer to the code

http://www.piazza.com/class_profile/get_resource/iksfk6wahl15bn/ikziuwxghst4fk

http://www.piazza.com/class_profile/get_resource/iksfk6wahl15bn/ikziuwxghst4fk

References

● https://en.wikipedia.org/
● https://www.ece.ucsb.edu/~parhami/pubs_folder/

parh02-arith-encycl-infosys.pdf
● http://www.swarthmore.edu/NatSci/echeeve1/R

ef/BinaryMath/NumSys.html
● http://www3.ntu.edu.sg/home/ehchua/programmi

ng/java/datarepresentation.html
● You can get all kinds of resources here

https://www.google.com/search?q=number%20r
epresentation

https://en.wikipedia.org/
https://www.ece.ucsb.edu/~parhami/pubs_folder/parh02-arith-encycl-infosys.pdf
https://www.ece.ucsb.edu/~parhami/pubs_folder/parh02-arith-encycl-infosys.pdf
http://www.swarthmore.edu/NatSci/echeeve1/Ref/BinaryMath/NumSys.html
http://www.swarthmore.edu/NatSci/echeeve1/Ref/BinaryMath/NumSys.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html
http://www3.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.html
https://www.google.com/search?q=number%20representation
https://www.google.com/search?q=number%20representation

Thanks!
Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

