Computer Architecture

Discussion 4

Minye Wu
wumy@shanghaitech.edu.cn

Mar. 15 2016

Discussion

* What is SYSCALL ?
* How SYSCALL works?

MIPS interrupts

* Interrupts are events that demand the processor’s attention
« Must be handled without affecting any active programs.

e Since Iinterrupts can happen at any time, there is no way for the active
programs to prepare for the interrupt.

when an interrupt occurs

. W{]en an interrupt occurs, your processor may perform the following
actions:

« move the current PC into another register, call the EPC
* record the reason for the exception in the Cause register

« automatically disable further interrupts from occurring, by left-shifting the
Status register

» change control (Jump) to a hardwired interrupt handler address

. Tot_return from a handler, your processor may perform the following
actions:

* move the contents of the EPC register to the PC.
* re-enable interrupts, by right-shifting the Status register

Cause register

The Cause register I1s a 32-bit register, but only certain fields on that register will

be used.
Bits 1 down to O will be set to describe the cause of the last interrupt/exception.

Number Name Description
00 INT

Instruction bus error
(invalid instruction)

10 OVF Arithmetic overflow
11 SYSCALL System call

01 IBUS

Status register

* The status register Is also a 32-bit register.

* Bits 3 down to O will define masks for the three types of
Interrupts/exceptions.

* [f an Interrupt/exception occurs when 1ts mask bit 1s current set to 0O,
then the interrupt/exception will be ignored.

Bit Interrupt/exception
3 INT

2 IBUS

1 OVF

0 SYSCALL

Back to SYSCALL functions in MARS
* How to use SYSCALL system services

» Step 1. Load the service number in register $vO.

« Step 2. Load argument values, if any, in $a0, $al, $a2, or $f12 as
specified.

* Step 3. Issue the SYSCALL instruction.
* Step 4. Retrieve return values, If any, from result registers as specified.

Service

print integer
print float
print double

print string

read integer
read float

read double

read string

Code in $v0
1
2
3

Arguments

$a0 = integer to print
$f12 = float to print
$f12 = double to print

$a0 = address of null-
terminated string to
print

$a0 = address of input
buffer
$al = maximum

number of characters to

read

Result

$v0 contains integer
read

$f0 contains float read

$f0 contains double
read

http://courses.missouristate.edu/KenVollmar/mars/Help/SyscallHelp.html

Read and print an integer in MARS

i $v0, 5

* syscall

* add $t0,$v0,$zero
i $vO, 1

* add $a0, $t0, $zero
* syscall

Exercise

* Input a string and output the substring that begins with
the second character.

.data

STRING: .word 0:10
text

i $v0,8

la $a0,STRING
i $a1,30
syscall

i $v0,4

la $a0,STRING
add $a0,%$a0,1
syscall

About project

* Step 0: Obtaining the Files

* Step 1: Building Blocks

* Step 2: SymbolTable

* Step 3: Instruction Translation

* Step 4: Pseudoinstruction Expansion

MIPS Instruction Formats

* R\INJAFR\FI Instructions

opcode (somethings else)
6-bit

https://en.wikibooks.org/wiki/MIPS_Assembly/Instruction_Formats
http://www.mrc.uidaho.edu/mrc/people/jtt/digital/MIPSir.ntml

Why we need two passes

.data

fibs: .word 0 : 12 # "array” of 12 words to contain fib values
size: .word 12 # size of "array”
. text
la 5t0, fibs # load address of array
, la 3td, size # load address of size variable
What is the address? lw $th, 0($thH) # load array size
11 5t2, 1 # 1 is first and second Fib. number

add.d $f0, $f2, S$f4
sw $t2, 0($t0)
sw $t2, 4(5t0)
addi $t1, $tb, -2
loop: 1w $t3, 0($t0)
Iw $t4, 4(5t0)
add $t2, $t3, $t4
sw $t2, 8($t0)
addi $t0, $t0, 4
addi $t1, S$tl1, -1
bgtz §tl, loop

F[0] =1

F[1] = F[0] =1

Counter for loop, will execute (size-2) times
Get value from array Fln]

Get value from array Fln+1]

$t2 = Fln] + Fln+1]

Store F[n+2] = F[n] + Fln*l] in array
increment address of Fib. number source
decrement loop counter

repeat if not finished yet.

la $a0, fibs first argument for print (array)
add Sal, Szero, $tb second argument for print (size)
jal print call print routine.

11 sv0, 10 system call for exit

B e N e e e N N E ES

syscall we are out of here.

