
From a FSM to a Digital Circuit
&

Designing an Adder/Subtractor
Zhu Chen

The FSM Diagram
0/0

1/0

00 01

10

1/0

0/1

1/10/0

rst_n

state
Input/Output

Function: Generate a positive pulse after the button is pushed. Keep 0 until the button is released and
pushed again.

From http://www.allaboutcircuits.com/textbook/digital/chpt-11/finite-state-machines/

From FSM to Truth Table

• List the input, current state, next state and output
• Empty states represented by X, will be useful later

Current State Input Next State Output

𝑆𝑆1 𝑆𝑆0 𝐼𝐼 𝑆𝑆1′ 𝑆𝑆0′ 𝑌𝑌
0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 1

0 1 1 1 0 1

1 0 0 0 0 0

1 0 1 1 0 0

1 1 0 X X X

1 1 1 X X X

0/0

1/0

00 01

10

1/0

0/1

1/10/0

rst_n

Represent the states

• Represent a state by the output of several flip-flops
• Store the state value
• Can be changed at the rising edge of the clock

• A D-Flip Flop
• Output = Input at rising edge
• �𝑄𝑄 is the complement of 𝑄𝑄
• Set S=R=0 to use it as expected
• If S=R=1, output will always be 0

Simplifying the logical representations

• Simplify the circuit with a Karnaugh Map
• Useful for 3 to 4 input variables (e.g., your next experiment)
• Hamming Distance of neighbor columns/rows = 1 (e.g., 01 and 11)
• Group 1's and X's together (1x2, 2x1, 2x2, 1x4, 4x1, etc.) and simplify

• 𝑆𝑆0𝑆𝑆1 are inputs of the 2 D-Flip flops, 𝑆𝑆0′𝑆𝑆1′ are the outputs

• 𝑆𝑆0′ = 𝑆𝑆0𝐼𝐼 + 𝑆𝑆1𝐼𝐼 = 𝑆𝑆0 + 𝑆𝑆1 𝐼𝐼, 𝑆𝑆1′ = 𝑆𝑆0 �𝑆𝑆1𝐼𝐼,𝑌𝑌 = 𝑆𝑆0𝑆𝑆1

00 01 11 10

0 0 0 1 0

1 0 1 X X

𝑺𝑺𝟎𝟎
𝑺𝑺𝟏𝟏𝑰𝑰

𝑺𝑺𝟎𝟎′

00 01 11 10

0 0 1 0 0

1 0 0 X X

𝑺𝑺𝟎𝟎
𝑺𝑺𝟏𝟏𝑰𝑰

𝑺𝑺𝟏𝟏′Cancel 𝑆𝑆0

Cancel 𝑆𝑆1 Ignore redundant X

Connect the circuit

• 𝑆𝑆0′ = 𝑆𝑆0𝐼𝐼 + 𝑆𝑆1𝐼𝐼 = 𝑆𝑆0 + 𝑆𝑆1 𝐼𝐼, 𝑆𝑆1′ = 𝑆𝑆0 �𝑆𝑆1𝐼𝐼,𝑌𝑌 = 𝑆𝑆0𝑆𝑆1

Designing an Adder/Subtractor

• An adder/subtractor is a circuit that is:
• An adder when 𝑆𝑆0 = 0
• An subtractor when 𝑆𝑆0 = 1
• Required in ALU (top figure)

• Can be a cascade of 1-bit adders
• 1-bit adders(bottom figure):

• Input: 𝑎𝑎, 𝑏𝑏, 𝑐𝑐0 (carry of last adder)
• Output: 𝑠𝑠, 𝑐𝑐1 (sum and carry)
• Design by truth table. 𝑠𝑠 = 𝑎𝑎 xor 𝑏𝑏 xor 𝑐𝑐

Cascade of 1-bit adders into an adder

• Rather intuitive
• 𝐶𝐶𝑛𝑛 to represent overflow

Cascade of 1-bit adders into a subtractor

• How come?

Cascade of 1-bit adders into a subtractor

• 𝐴𝐴,𝐵𝐵 are n-bit numbers with signs
• �̃�𝐴 is the 2's complement, �̅�𝐴 is 1's complement
• Setting 𝑆𝑆𝑆𝑆𝐵𝐵 = 1 to get �𝐵𝐵

• 𝑏𝑏𝑖𝑖 xor 𝑆𝑆𝑆𝑆𝐵𝐵 = 𝑏𝑏𝑖𝑖 when 𝑆𝑆𝑆𝑆𝐵𝐵 = 0
• 𝑏𝑏𝑖𝑖 xor 𝑆𝑆𝑆𝑆𝐵𝐵 = �𝑏𝑏𝑖𝑖 when 𝑆𝑆𝑆𝑆𝐵𝐵 = 1

• Subtract to addition: 𝐴𝐴 − 𝐵𝐵=𝐴𝐴 + �𝐵𝐵
• −𝐵𝐵 = �𝐵𝐵 considering only the lowest (n-1) bits:
−𝐵𝐵 𝑛𝑛−1 = 2𝑛𝑛−1 + (−𝐵𝐵) 𝑛𝑛−1 = 2𝑛𝑛−1 − 1 − 𝐵𝐵 + 1 = �𝐵𝐵 + 1 = �𝐵𝐵

Where ⋅ 𝑛𝑛−1 represents taking the lowest (n-1) bits

Overflow of n-bit adder

• Let 𝐴𝐴,𝐵𝐵 be the equivalent inputs to an n-bit adder
• If 𝐴𝐴 > 0,𝐵𝐵 > 0

• 𝑎𝑎𝑛𝑛−1 = 𝑏𝑏𝑛𝑛−1 = 0 ⇒ 𝑐𝑐𝑛𝑛 = 0
• If overflow, 𝑐𝑐𝑛𝑛−1 = 1

• If 𝐴𝐴𝐵𝐵 < 0
• Overflow won't happen since 𝐴𝐴 + 𝐵𝐵 ≤ |𝐴𝐴|

Overflow of n-bit adder

• If 𝐴𝐴 < 0,𝐵𝐵 < 0, we actually add their complements �̅�𝐴, �𝐵𝐵
• 𝑎𝑎𝑛𝑛−1 = 𝑏𝑏𝑛𝑛−1 = 1 ⇒ 𝑐𝑐𝑛𝑛 = 1
• If overflow, 𝑐𝑐𝑛𝑛−1 = 0 (a bit tricky here)

• If 𝐴𝐴 + 𝐵𝐵 𝑛𝑛−1 = 2𝑛𝑛−1, then 𝐴𝐴 + 𝐵𝐵 = −2𝑛𝑛, represented by 0b100 … 0, not overflow
• Overflows when 𝐴𝐴 + 𝐵𝐵 𝑛𝑛−1 > 2𝑛𝑛−1
⇒ 2𝑛𝑛−1 − �̃�𝐴𝑛𝑛−1 + 2𝑛𝑛−1 − �𝐵𝐵𝑛𝑛−1 > 2𝑛𝑛−1 ⇒ �̃�𝐴𝑛𝑛−1 + �𝐵𝐵𝑛𝑛−1 < 2𝑛𝑛−1 ⇒ 𝑐𝑐𝑛𝑛−1 = 0

• To sum up, the addition overflows if and only if 𝑐𝑐𝑛𝑛 xor 𝑐𝑐𝑛𝑛−1=true

The End

	From a FSM to a Digital Circuit�&�Designing an Adder/Subtractor
	The FSM Diagram
	From FSM to Truth Table
	Represent the states
	Simplifying the logical representations
	Connect the circuit
	Designing an Adder/Subtractor
	Cascade of 1-bit adders into an adder
	Cascade of 1-bit adders into a subtractor
	Cascade of 1-bit adders into a subtractor
	Overflow of n-bit adder
	Overflow of n-bit adder
	The End

