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Thread

* Threads share process state such as memory, open files, etc.

* Each thread has a separate stack for procedure calls (in shared
memory)

* Thread is unit of sequential execution
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Exercises

* #include <pthread.h>
* #include <signal.h>

pthread_t

Int pthread_create(pthread_t *tidp,const pthread_attr_t
*attr,(void*)(xstart_rtn)(void*),void *arg);

Int pthread_join(pthread_t thread, void **retval);

sighal(int signo, void(*func)(int))



Mutex

* pthread_mutex t

* Int pthread_mutex_init(pthread_mutex_t *restrict mutex,const
pthread_mutexattr_t *restrict attr);

* Int pthread_mutex_lock( pthread mutex_t *mutex);
* Int pthread_mutex_unlock(pthread_mutex_t *mutex);

* pthread_mutex_destroy(pthread_mutex_t *mutex);



Function pointer

* Declare a function pointer as though you were declaring a
function, except with a name like *foo instead of just foo:

* void (*foo)(Int);

You can get the address of a function simply by naming it:
void foo();

func_pointer = foo;

or by prefixing the name of the function with an ampersand:
void foo();

func_pointer = &foo;



Function pointer

Invoke the function pointed to just as If you were calling a function.

func_pointer( argl, arg?2 ).
or you may optionally dereference the function pointer before calling
the function It points to:

(x*func_pointer)( argl, arg?2 );



