
Computer Architecture
Discussion 6

Minye Wu

wumy@shanghaitech.edu.cn

Mar. 29 2016

Keywords

• Thread

• Mutex

• Signal

• Function pointer

Thread

• Threads share process state such as memory, open files, etc.

• Each thread has a separate stack for procedure calls (in shared
memory)

• Thread is unit of sequential execution

Google image

scheduling

Google image

Mutex

Google image

Signal

Google image

Exercises

• #include <pthread.h>

• #include <signal.h>

• pthread_t

• int pthread_create(pthread_t *tidp,const pthread_attr_t
attr,(void)(*start_rtn)(void*),void *arg);

• int pthread_join(pthread_t thread, void **retval);

• signal(int signo, void(*func)(int))

Mutex

• pthread_mutex_t

• int pthread_mutex_init(pthread_mutex_t *restrict mutex,const
pthread_mutexattr_t *restrict attr);

• int pthread_mutex_lock(pthread_mutex_t *mutex);

• int pthread_mutex_unlock(pthread_mutex_t *mutex);

• pthread_mutex_destroy(pthread_mutex_t *mutex);

Function pointer

• Declare a function pointer as though you were declaring a
function, except with a name like *foo instead of just foo:

• void (*foo)(int);

You can get the address of a function simply by naming it:
void foo();
func_pointer = foo;
or by prefixing the name of the function with an ampersand:
void foo();
func_pointer = &foo;

Function pointer

Invoke the function pointed to just as if you were calling a function.

func_pointer(arg1, arg2);

or you may optionally dereference the function pointer before calling
the function it points to:

(*func_pointer)(arg1, arg2);

