Computer Architecture

Discussion 6

Minye Wu
wumy@shanghaitech.edu.cn

Mar. 29 2016



Keywords

* Thread

* Mutex

* Signal

* Function pointer



Thread

* Threads share process state such as memory, open files, etc.

* Each thread has a separate stack for procedure calls (in shared
memory)

* Thread is unit of sequential execution



Google image



scheduling

Terminate

(Short Term)
Scheduling

Create
Blocked

Unblock
Medium Term

Scheduling  Suspend Resume Suspend Resume

Blocked
Suspended

Ready
Suspended

Unblock

Google image



Mutex

Mutex

release release

shared resource

Google image



Signal

SIGINT

SIGQUIT
SIGSEGV

. SIGPIPE

SIGALRM
SIGUSR1

Google image



Exercises

* #include <pthread.h>
* #include <signal.h>

pthread_t

Int pthread_create(pthread_t *tidp,const pthread_attr_t
*attr,(void*)(xstart_rtn)(void*),void *arg);

Int pthread_join(pthread_t thread, void **retval);

sighal(int signo, void(*func)(int))



Mutex

* pthread_mutex t

* Int pthread_mutex_init(pthread_mutex_t *restrict mutex,const
pthread_mutexattr_t *restrict attr);

* Int pthread_mutex_lock( pthread mutex_t *mutex);
* Int pthread_mutex_unlock(pthread_mutex_t *mutex);

* pthread_mutex_destroy(pthread_mutex_t *mutex);



Function pointer

* Declare a function pointer as though you were declaring a
function, except with a name like *foo instead of just foo:

* void (*foo)(Int);

You can get the address of a function simply by naming it:
void foo();

func_pointer = foo;

or by prefixing the name of the function with an ampersand:
void foo();

func_pointer = &foo;



Function pointer

Invoke the function pointed to just as If you were calling a function.

func_pointer( argl, arg?2 ).
or you may optionally dereference the function pointer before calling
the function It points to:

(x*func_pointer)( argl, arg?2 );



