Caches

Relationships between 3 mappings

Direct Mapped

Different Organizations of an Eight-Block Cache
Set Associative

One-way set associative

(direct mapped)
Fully Associative: remove set index ook T De
1 - Two-way set associative
5 Set Tag Data Tag Data
« Processor Address (32-bits total) R 3 0
1
Tag Set Index | Block offset . 5
Total size of S in blocks is equal to > 3
number of sets x associativity. For 6
fixed S size and fixed block size, !
Same format Of add ress: increasing associativity decreases Four-way set associative
. number of sets while increasing)
If.eaCh set maps toN numbers’ then' number of elements per set. With | Set Tag Data Tag Data Tag Data Tag Data
Direct Mapped: a+|Og(N)+C eight blocks, an 8-way set- 0
— associative S is same as a fully 1
Set Associative: a+n_w+(log(N)-n_w)+c |associative &.
Fully Associative: remove set index Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

e rrrr bl

Direct Mapped Cache

* Only one comparator Is
enough — each memory

block is mapped to only Valid bit
ensurgs
1 index In cache something
useful in
* Number of index bits cache for
. . this index
determined by cache size
_ Comparg
and block size Tag with
_ upper part of|
* Index_num = cache_size / Address to
see if a Hit

Tag

3130 .

1312 11

210/

l

[

S

20
Index

Index Valid Tag

0

1
2

Data

e
. L

1021
1022
1023

T=20

2N\ (byte offset) (in Byte)

é]K Comparator

What kind of locality are we taking advantage of?

32

* One word blocks, cache size = 1K words (or 4KB)
Byte offset

Read
data
from
cache
instead
of
memory
if a Hit

Direct Mapped Cache

e A 16B cache Caching: A Simple First Example
R Mainmemow
* Memory blocks with the 00 e word blocks
, Cache T o Two low order bits (xx)
save Index could be ndex Valid Tag Data o e the
stored in the same data 00 e T oi00e POk B2bwords
address of a cache 01 o o 0101xx
10 I | S S oToxx
o Compare Tag(the neXt 2 11 R ioriiir]011ixx . Q@ Where inthe cache is
~]1000xx the mem block?
low-order bits) to judge if - 25emrereeen W\ L
the memory blOCk inS in Comparethe cache tag tothe T 011xx memory address bits —
high-order 2 memory address o 1100xx the index - to determine
CaChe bits to tell if the memory . 1101xx which cache block (i.e.,
block is in the cache ~o fITHOxx - modulo the number of
® |f |n’ add byte Offset (provided valid bit is set) ~1111xx blocksin the cache)

Processor Address (32-bits total)

r §

Set_ASSOClatlve CaCheS Tag Set Index |Block offset

210 s Byte offset

* A mixture of Fully Associative and Direct I\/Iapped
* FA: looks up every tag o [. - 4

* DM: compare with only 1 tag Index

°® SA |OO kS up N WayS vV Tag Data V Tag Data V Tag Data V Tag Data
: : , Way-6—— Wryt ; ry 2 X Wry3
* Tag_width + index_width S s R e e O e e B e s

N o= O

+ offset_width = const ” = ” o
I o o o .
* If one Is changed, we can @ P AS, NS
L O O O O
change another to maintain | = .

.] |
the CaChe Slze le \;\\4x15flect/

Data

Set-Assoclative Caches

Range of Set-Associative Caches

* For a fixed-size cache and fixed block size, each
increase by a factor of two in associativity doubles the
number of blocks per set (i.e., the number or ways)
and halves the number of sets — decreases the size of
the index by 1 bit and increases the size of the tag by 1

blt Used for tag compare Selects the set Selects the word in the block
Talg Inéex Word loffset Byte pffset

— > Increasing associativity

Decreasing associativity «—

:‘ Fully associative
Direct mapped }‘7 | (only one set)
(only one way) Tag is all the bits except
Smaller tags, only a block and byte offset

single comparator

Set-Assoclative Caches

Processor Address (32-bits total)

Tag

Set Index

Block offset

For a cache with constant total capacity, if we
increase the number of ways by a factor of 2,
which statement is false:

A: The number of sets could be doubled
B: The tag width could decrease

C: The block size could stay the same

D: The block size could be halved

E: Tag width mustincrease

21202W —const— i + b + w =const
Tag width must increase by 1.

e 1 more index bit

e A: true If we divide
block size by 4

e B: False.

* C: byte offset not

changed

* D: b_width-1

e £: Correct

Set-Assoclative Caches

Associativity * # of sets * block_size
Bytes = blocks/set * sets * Bytes/block

C=N*S *B

3130 ... 1312 11 ...

Tag

Index

Byte Offset

210 s Byte offset
Set Index ' l I ‘I
Tag '|~22 ~Ns
Index
vV Tag Data V Tag Data V Tag Data V Tag Data
0
1 1 1 1
2 ‘\r.\r'qv o 2 aA's Fy 3 2 ‘v‘v’Fy ra 5 ‘v.v'Fy 3

253
254
255

253

253

253

254

254

254

255

255

255

b.SJ

[
—— 4x1 select /
'

Data

Set-Assoclative Caches

Example: 2-Way Set Associative S
(4 words = 2 sets x 2 ways per set)

Cache

Same tag can be put Wway set v Tag Data

anywhere in the set.

o O 1

1 .':f:
o1

1 [
Q: Is it there?

Compareallthe cache
tagsin theset to the high
order 3 memory address
bits to tell if the memory
block is inthe cache

Main Memory
- 100d0xx
1000 1xx One word blocks

001j0xx

“710011xx

0100xx

~10101xx

0170xx

T0T11xx

10q0xx

- [T001xx

::ff 107oxx

= TT011xx

o llqO}(x

..§331101xx

= TTT0xx

Two low order bits
define the byte in the
word (32b words)

Q: How do we find it?

Use next 1 low order
memory address bit to
determine which cache
set (i.e., modulo the
number of setsin the
cache)

19

Average Memory Access Time(AMAT)

AMAT = Time for a hit + Miss rate x Miss penalty

Given a 200 psec clock, a miss penalty of 50 clock
cycles, a miss rate of 0.02 misses per instruction and
a cache hit time of 1 clock cycle, what is AMAT?

[

O B: 400 psec

0 D 2 800 psec

Exercise

e Consider a 32-bit physical memory space and a 32 KiB 2-way
assoclative cache with LRU replacement.

You are told the cache uses 5 bits for the offset field. Write in the
number of bits In the tag and index fields in the figure below.

Tag Index Offset

5 bits
31 0

Tag Index Offset

Exercise —

31

* For the same cache, after the execution of the following code:
int ARRAY SIZE = 64 * 1024;
int arr[ARRAY SIZE]|:; // #*arr is aligned to a cache block
/% loop 1 %/ for (int i = 0; i < ARRAY SIZE: i += 8) arrli] = 1i;
/% loop 2 */ for (int i = ARRAY SIZE - 8; i >=0; i —= 8)
arr[i+l] = arrli];

* 1. What is the hit rate of loop 17 What types of misses (of the 3 Cs), if
any, occur as a result of loop 17

e 2. What is the hit rate of loop 27 What types of misses (of the 3 Cs), if
any, occur as a result of loop 27

Tag Index Offset

Exercise

18 bits 9 bits S bits

31

* For the same cache, after the execution of the following code:
int ARRAY SIZE = 64 * 1024;
int arr[ARRAY SIZE]|:; // #*arr is aligned to a cache block
/% loop 1 %/ for (int i = 0; i < ARRAY SIZE: i += 8) arrli] = 1i;
/% loop 2 */ for (int i = ARRAY SIZE - 8; i >=0; i —= 8)
arr[i+l] = arrli];

* 1. What is the hit rate of loop 17 What types of misses (of the 3 Cs), if
any, occur as a result of loop 1? 0, Compulsory Misses

e 2. What is the hit rate of loop 27 What types of misses (of the 3 Cs), if
any, occur as a result of loop 2? 9/16, Capacity Misses

	Caches
	Relationships between 3 mappings
	Direct Mapped Cache
	Direct Mapped Cache
	Set-Associative Caches
	Set-Associative Caches
	Set-Associative Caches
	Set-Associative Caches
	Set-Associative Caches
	Average Memory Access Time(AMAT)
	Exercise
	Exercise
	Exercise

