Cache II

3C's: Exclusive!

Sources of Cache Misses (3 C's)

- *Compulsory* (cold start, first reference):
 - 1st access to a block, "cold" fact of life, not a lot you can do about it.
 - If running billions of instructions, compulsory misses are insignificant
- Capacity:
 - Cache cannot contain all blocks accessed by the program
 - Misses that would not occur with infinite cache
- *Conflict* (collision):
 - Multiple memory locations mapped to same cache set
 - Misses that would not occur with ideal fully associative cache

3C's: Exclusive!

- Compulsory: Cannot be solved even if associativity and capacity are infinite
- Conflict: Can be eliminated by increasing associativity without changing cache capacity
- Capacity: Can be eliminated only by increasing cache capacity
- An example:
 - Cache capacity = 8KB, Associativity = 2, block size = 4B, LRU
 - Access the following addresses in order:
 - 0x00000000: compulsory
 - 0x00001000: compulsory
 - 0x00002000: compulsory
 - 0x00000000: conflict (increase associativity to 4 solves the problem)

3C's: Exclusive!

- Another example:
 - Consider a 32-bit physical memory space and a 32 KiB 2-way associative cache with LRU replacement. After the execution of the following code: int ARRAY_SIZE = 64 * 1024; int arr[ARRAY_SIZE]; // *arr is aligned to a cache block /* loop 1 */ for (int i = 0; i < ARRAY_SIZE; i += 8) arr[i] = i; /* loop 2 */ for (int i = ARRAY_SIZE 8; i >= 0; i -= 8) arr[i+1] = arr[i];
 - 1. What is the hit rate of loop 1? What types of misses (of the 3 Cs), if any, occur as a result of loop 1? 0, Compulsory Misses
 - 2. What is the hit rate of loop 2? What types of misses (of the 3 Cs), if any, occur as a result of loop 2? 9/16, Capacity Misses

Multi-Level Cache

- Consider only L1 and L2 cache
- Local Miss Rate L2\$ = L2\$ Misses / L1\$ Misses = L2\$ Misses / Total_L2_accesses
- Global Miss Rate = L2\$ Misses / Total Accesses
 - =(L2\$ Misses / L1\$ Misses)x(L1\$ Misses / Total Accesses)
 - =Local Miss Rate L2\$ x Local Miss Rate L1\$
- AMAT = Time for a hit + Miss Rate x Miss Penalty
 - = Time for a L1\$ hit + (local) Miss Rate L1\$ x
 - (Time for a L2\$ hit + (local) Miss Rate L2\$ x L2\$ Miss penalty)

Multi-Level Cache

- Suppose you have the following system that consists of an:
 - L1\$ with a local hit rate of 80% and a hit time of 2 cycles
 - L2\$ with a global miss rate of 8% and a hit time of 15 cycles
 - DRAM accesses take 50 cycles
- What is the AMAT of the L1 cache?____
- Suppose we want to improve our AMAT, making sure that it is no greater than 6 cycles, by improving our L2\$'s hit rate. What is the minimum possible local hit rate for L2\$ that allows us to meet our AMAT requirement?

Multi-Level Cache

- Suppose you have the following system that consists of an:
 - L1\$ with a local hit rate of 80% and a hit time of 2 cycles
 - L2\$ with a global miss rate of 8% and a hit time of 15 cycles
 - DRAM accesses take 50 cycles
- What is the AMAT of the L1 cache? 2+0.2*(15+(0.08/0.2)*50)=9
- Suppose we want to improve our AMAT, making sure that it is no greater than 6 cycles, by improving our L2\$'s hit rate. What is the minimum possible local hit rate for L2\$ that allows us to meet our AMAT requirement? <u>90%</u>