
Computer Architecture

Discussion 10

CPP Qualifier:const

Yanpeng Zhao

zhaoyp1@shanghaitech.edu.cn

Qualifier : const

• Why do we need const?
- Define a variable whose value we know cannot be
changed.

- Used as macro definition:

- Facilitate type-checking: e.g., const int x = 10;
so that the compiler knows that x cannot be modified.

- Prevent programming mistakes

-

• How to use it?
- Constant variables, declared and must be initialized

const int x = 10; // ok
const int x; // error

const int MAX = 100;

const int x = 10; x = 12; // error

Scope of const

• By default, const Objects are local to a file
- Which implies the same const variable cannot be
shared by different files and we have to define it
in each file.

• Use in multiple files
- Take the advantage of the qualifier extern on both
its definition and declarations.

// heada.cpp defines and initializes a const that is accessible to other files

extern const int MULTIPLE_FILE = 12;

// headb.h same MULTIPLE_FILE as defined in heada.cpp

extern const int MULTIPLE_FILE;

const constant variables

• Common variable

• Const array

• Const object

• Other objects
- Bind a reference to an object of a const type.

TYPE const var = XXX; const TYPE var = XXX;

int const arr[2] = {1, 2} const int arr[2] = {1, 2};

Class A; const A b = a; A const b = a;

Type a; TYPE const &var = a;

const and references

• Reference to const
- Which is a reference that refers to a const type.

- Cannot be used to change the object to which the
reference is bound.

• const Reference is a Reference to const
- A reference is not an object, so we cannot make a
reference itself const.

const int ci = 1024;

const int &r1 = ci; // ok: both reference and underlying object are const

r1 = 42; // error: r1 is a reference to const

int &r2 = ci; // error: non const reference to a const object

const and references

• Bind a reference to const to a nonconst object
- We can initialize a reference to const from any
expression that can be converted to the type of the
reference.

- How is that implemented (the compiler makes it)

int i = 42;

const int &r1 = i; // we can bind a const int& to a plain int object

const int &r3 = r1 * 2; // ok: r3 is a reference to const

double dval = 3.14;

const int &ri = dval;

const int temp = dval; // create a temporary const int from the double

const int &ri = temp; // bind ri to that temporary

const and references

• One more word
- A reference to const restricts only what we can do
through that reference

int i = 42;

int &r1 = i; // r1 bound to i

const int &r2 = i; // r2 also bound to i; but cannot be used to change i

r1 = 0; // r1 is not const; i is now 0

r2 = 0; // error: r2 is a reference to cons

const and pointers

• As with referenes
- Define pointers that point to either const or
nonconst types

- A pointer to const may not be used to change the
object to which the pointer points

- A pointer to const says nothing about whether the
object to which the pointer points is const

const double pi = 3.14; // pi is const; its value may not be changed

double *ptr = π // error: ptr is a plain pointer

const double *cptr = π // ok: cptr may point to a double that is const

*cptr = 42; // error: cannot assign to *cptr

doubled dval = 3.14; cptr = &dval;

const and pointers

• Differs from references
- Pointers are objects

- Indicate that the pointer is const by putting the
const after the *.

- A pointer is itself const says nothing about whether
we can use the pointer to change the underlying
object.

int errNumb = 0;

int *const curErr = &errNumb; // curErr will always point to errNumb

const double pi = 3.14159;

const double *const pip = π // pip is a const pointer to a const object

*curErr = 0; // ok: reset the value of the object to which curErr is bound

exercises

• so what are the differences between these codes

• one more look at const array

const TYPE* p = XXX;

TYPE* const p = XXX;

TYPE const *p = XXX;

Const TYPE* const p = XXX;

// global variables, not in the function

const int SIZES[3] = {1, 11, 111};

int arr[SIZES[2]]; // right? Why?

const and functions

• Common function
- Return value, which cannot be changed

- Parameter, which cannot be changed in the function

void f1(const int p); // trivial, formal parameters are the copies of arguments

void f1(int* const p); // trivial, formal parameters are the copies of arguments

void f1(const int* p); // what the pointer points to is const

void f1(const int& p); // what the reference refers to is const

const int f1(); // trivial, why?

const int* f1(); // const pointer

int* const f1(); // pointer to a const

const int& f1(); // trivial, why?

const and class

• const Member function
- Which cannot change the state of the object

- A function declared const that doesn't prohibit non-
const functions from using it; the rule is this:

• Const functions can always be called

• Non-const functions can only be called by non-const objects

<return-value> <class>::<member-function>(<args>) const {}

class A { void f1(); void f2() const; protected: int common_var; }

const A a;

a.f1(); // error

a.f2(); // ok

const A *a = new A();

A->f1(); // error

A->f2(); // ok

A a;

a.f1(); // ok

a.f2(); // ok

void A::f1() {}

void A::f2() const

{ f1(); // error }

const and class

• const Member function
- Overloading: when you want to have both const and
nonconst version of the function that returns a
nonconst reference:

const <return-value> <class>::<member-function>(<args>) const {}

<return-value> <class>::<member-function>(<args>) {}

class A {

int & get_common_var();

const int & get_common_var() const;

protected: int common_var;

};

int & A::get_common_var() { return common_var; }

const int & A::get_common_var() const { return common_var; }

const and class

• const Member variable
- How to define the constant variable for the class

- via qualifier enum

class A {

const int SIZE = 100; // error

int arr[SIZE];

};

Value of SIZE can be obtained only after

the object of A is created.

class A {

enum {SIZE0 = 10, SIZE1 = 20};

int arr[SIZE0];

};

enum belongs to the class. The value is

resolved at compile time, integer by

default.

std::cout << A::SIZE0 << std::endl;

const and class

• const Member variable
- Cannot be changed

- Which must be initialized in the initialization list

- Or via qualifier static

class A {

A(); // error:uninitialized

const member in 'const int'

const int var;

}; // dynamically initialized

class A {

A(); // error

A(int v, int u):var(v){}

const int var;

}; // dynamically initialized

class A {

static const int var;

};

const int A::var = XXX;

Same as the way static

variables in the class are

initialized. Statically

initialized.

const and class

• Static variables of the class
- Which are shared by all the objects of the class

// the way static

variables are initialized

class A {

public:

static int static_var;

};

int A::static_var = 99;

// guess what

std::cout << A::static_var++ << std::endl;

A a1, a2;

std::cout << a1.static_var << std::endl;

std::cout << a2.static_var << std::endl;

Using the this pointer

• Allows objects to access their own address

• Implicit first argument on non-static member
function call to the object

• The type of the this pointer depends upon the type
of the object and whether the member function
using this is const

- In a non-const member function of A, this has type

- In a const member function of A, this has type

• Uhmm…

A * const // constant pointer to an A object

const A * const // constant pointer to a constant A object

static void f1() const {} // is this right? Why?

const and class

• If we have to change const variables
- Use qualifier mutable

mutable class A {

int get_mutable_var();

void set_mutable_var(int v) const;

private: mutable int mutable_var;

};

void A::set_mutable_var(int v) const { mutable_var = v; }

const and class

• If we have to change const variables
- Use qualifier mutable

mutable class A {

int get_mutable_var();

void set_mutable_var(int v) const;

private: mutable int mutable_var;

};

void A::set_mutable_var(int v) const { mutable_var = v; }

const cast

• Use a const_cast in order to temporarily strip
away the const-ness of the object

// a bad version of strlen that doesn't declare its argument const

int bad_strlen (char *x)

{

strlen(x);

}

// note that the extra const is actually implicit in this declaration since

const char *x = "abc"; // string literals are constant

// cast away const-ness for our strlen function

bad_strlen(const_cast<char *>(x));

const iterators

• Like normal iterators, except that they cannot
be used to modify the underlying data

std::vector<int> vec;

vec.push_back(3);

vec.push_back(4);

vec.push_back(8);

for (std::vector<int>::const_iterator itr = vec.begin(), end = vec.end();

itr != end;

++itr) {

// just print out the values...

std::cout<< *itr <<std::endl;

}

But…

• Just because you can return a const reference
doesn‘t mean that you should return a const
reference！

- For instance, return the reference to the local data in a
function, which (unless it is static) will be no longer
valid.

• Efficiency Gains?
- One common justification for const correctness is based
on the misconception that constness can be used as the
basis for optimizations.

- A variable declared const will not necessarily remain
unchanged. E.g., using const_cast, mutable

const vs #define

• The way stored
- const: only one copy

- define: memory allocated whenever it is used

• Type-checking
- const: yes, has a specific data type

- define: no, no data type, only does macro expansion

• Behaviors of the compiler
- const: resolve the value at the compiling time or
the running time

- define: macro expansion at the preprocessing phase

assignment operator overload

• ‘=’ cannot deal with the objects containing the
pointer variables, which may cause the shallow
copy class C {

private: int idx; int *val;

public: C() : val(new int) {}

C & operator=(const C & c) {

if (this != &c) {

this->idx = c.idx;

this->val = c.val;

}

return *this;

}

};

class C {

private: int idx; int *val;

public:

C() : val(new int) {}

// shallow copy

C(const C & c) : idx(c.idx),

val(c.val) {}

// deep copy

C(const C & c) : idx(c.idx),

val(new int(*c.val)) {}

shallow copy vs deep copy

From: https://en.wikipedia.org/wiki/Object_copying

Deep copy

Shallow copy

Thanks
Q ? std::cout << “Oh no!\n” : std::cout << “Bye!\n”;

Borůvka's algorithm for MST

• To parallel the MST algorithm

Input: A connected graph G whose edges have distinct weights
1 Initialize a forest T to be a set of one-vertex trees, one for each vertex of the graph.
2 While T has more than one component:
3 For each component C of T:
4 Begin with an empty set of edges S
5 For each vertex v in C:
6 Find the cheapest edge from v to a vertex outside of C, and add it to S
7 Add the cheapest edge in S to T
8 Combine trees connected by edges to form bigger components
9 Output: T is the minimum spanning tree of G.

From: https://en.wikipedia.org/wiki/Bor%C5%AFvka%27s_algorithm

Borůvka's algorithm for MST

• An example

From: http://www.geeksforgeeks.org/greedy-algorithms-set-9-boruvkas-algorithm/

