
CS	102
Computer	Architecture	

Lecture	2:	Introduction	to	C,	Part	I

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• Compile	vs.	Interpret
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

2

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

3

ENIAC	(U.Penn.,	1946)
First	Electronic	General-Purpose	Computer

4

• Blazingly	fast	(multiply	in	2.8ms!)
– 10	decimal	digits	x	10	decimal	digits

• But	needed	2-3	days	to	setup	new	program,	as	
programmed	with	patch	cords	and	switches

EDSAC	(Cambridge,	1949)
First	General	Stored-Program	Computer

5

• Programs	held	as	numbers	in	memory
• 35-bit	binary	2’s	complement	words

But	actually: first	working	programmable,	fully	
automatic	digital	computer:	Zuse Z3	(Germany	1941)

6

Processor

Control

Datapath

Components	of	a	Computer

7

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	 Interface I/O-Memory	Interfaces

Program

Data

Great	Idea:	Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

8

We	are	here!

Introduction	to	C
“The	Universal	Assembly	Language”

9

Intro	to	C
• C	is	not	a	“very	high-level”	 language,	nor	a	
“big”	one,	and	is	not	specialized	to	any	
particular	area	of	application.	But	its	absence	
of	restrictions	and	its	generality	make	it	more	
convenient	and	effective	for	many	tasks	than	
supposedly	more	powerful	languages.

– Kernighan	and	Ritchie
• Enabled	first	operating	system	not	written	in	
assembly	language:	UNIX	- A	portable	OS!

10

Intro	to	C

• Why	C?:	we	can	write	programs	that	allow	us	
to	exploit	underlying	 features	of	the	
architecture	– memory	management,	special	
instructions,	parallelism

• C	and	derivatives	(C++/Obj-C/C#)	still	one	of	
the	most	popular	application	programming	
languages	after	>40	years!

11

TIOBE	Index	of	Language	Popularity

12http://www.tiobe.com

The	ratings	are	based	on	 the	number	 of	skilled	engineers	world-wide,	courses	and	third	
party	vendors.

TIOBE	Programming	Community	Index

13

Disclaimer

• You	will	not	learn	how	to	fully	code	in	C	in	
these	lectures!	You’ll	still	need	your	C	
reference	for	this	course
– K&R	is	a	must-have
• Check	online	for	more	sources

• Key	C	concepts:	Pointers,	Arrays,	Implications	
for	Memory	management

• We	will	use	ANSI	C89	– original	”old	school”	C

14

Compilation:	Overview
• C	compilers	map	C	programs	into	architecture-
specific	machine	code	(string	of	1s	and	0s)
– Unlike	Java,	which	converts	to	architecture-
independent	bytecode

– Unlike	Python	environments,	which	interpret	the	code
– These	differ	mainly	in	exactly	when	your	program	is	
converted	to	low-level	machine	instructions	(“levels	of	
interpretation”)

– For	C,	generally	a	two	part	process	of	compiling	.c files	
to	.o files,	then	linking	the	.o files	into	executables;		

– Assembling	is	also	done	(but	is	hidden,	i.e.,	done	
automatically,	by	default);	we’ll	talk	about	that	later

15

C	Compilation	Simplified	Overview
(more	later	in	course)

16

foo.c bar.c

Compiler Compiler

foo.o bar.o

Linker lib.o

a.out

C	source	files	(text)

Machine	code	object	files

Pre-built	object	
file	libraries

Machine	code	executable	file

Compiler/assembler	
combined	here

Compilation:	Advantages

• Excellent	run-time	performance:	generally	
much	faster	than	Scheme	or	Java	for	
comparable	code	(because	it	optimizes	for	a	
given	architecture)

• Reasonable	compilation	time:	enhancements	
in	compilation	procedure	(Makefiles)	allow	
only	modified	files	to	be	recompiled

17

Compilation:	Disadvantages
• Compiled	files,	including	the	executable,	are	
architecture-specific,	depending	on	processor	
type	(e.g.,	MIPS	vs.	RISC-V)	and	the	operating	
system	(e.g.,	Windows	vs.	Linux)

• Executable	must	be	rebuilt	on	each	new	system
– I.e.,	“porting	your	code”	to	a	new	architecture

• “Change	→ Compile	→ Run	[repeat]”	iteration	
cycle	can	be	slow	during	development
– but	Make	tool	only	rebuilds	changed	pieces,	and	can	
do	compiles	in	parallel	(linker	is	sequential	though	->	
Amdahl’s	Law)

18

C	Pre-Processor	(CPP)

• C	source	files	first	pass	through	macro	processor,	CPP,	before	
compiler	sees	code

• CPP	replaces	comments	with	a	single	space
• CPP	commands	begin	with	“#”
• #include	“file.h”	/*	Inserts	file.h into	output	*/
• #include	<stdio.h>	/*	Looks	for	file	in	standard	location	*/
• #define	M_PI	(3.14159)	/*	Define	constant	*/
• #if/#endif /*	Conditional	inclusion	of	text	*/
• Use	–save-temps	option	to	gcc to	see	result	of	preprocessing
• Full	documentation	at:	http://gcc.gnu.org/onlinedocs/cpp/

19

foo.c CPP foo.i Compiler

Typed	Variables	in	C
int variable1 = 2;

float variable2 = 1.618;

char variable3 = 'A';

• Must	declare	the	type	of	
data	a	variable	will	hold
– Types	can't	change

20

Type Description Examples
int integer	numbers,	including	negatives 0,	78,	-1400
unsigned	int integer	numbers	(no	negatives) 0,	46,	900
float floating	point	decimal	numbers 0.0,	1.618,	-1.4
char single	text	character	or	symbol 'a',	'D',	'?’
double greater	precision/big	FP	number 10E100
long larger	signed	integer 6,000,000,000

Integers:	Python	vs.	Java	vs.	C

• C:	int should	be	integer	type	that	target	
processor	works	with	most	efficiently

• Only	guarantee:	sizeof(long long)	
≥	sizeof(long)	≥	sizeof(int)	≥		sizeof(short)
– Also,	short >=	16	bits,	long >=	32	bits
– All	could	be	64	bits 21

Language sizeof(int)
Python >=32	bits	(plain	ints),	infinite (long	ints)
Java 32	bits
C Depends	on	computer;	16 or	32	or	64

Consts and	Enums in	C

• Constant	is	assigned	a	typed	value	once	in	the	declaration;
value	can't	change	during	entire	execution	of	program
const float golden_ratio = 1.618;
const int days_in_week = 7;

• You	can	have	a	constant	version	of	any	of	the	standard	C	
variable	types

• Enums:	a	group	of	related	integer	constants.		Ex:
enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};
enum color {RED, GREEN, BLUE};

22

B:	Can	assign	to	“PI”	but	not	“pi”	

C:	Code	runs	at	same	speed	using	“PI”	or	“pi”

A:	Constants	“PI”	and	“pi”	have	same	type

23

Compare	“#define PI 3.14”	and
“const float pi=3.14”	– which	is	true?

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

24

Administrivia
• Find	a	partner	for	the	lab	and	send	your	
selection	to	Xu	Qingwen (xuqw)

• Labs	start	next	week!	Check	your	schedule!	You	
cannot	get	checked	without	a	partner!

• The	tasks	for	Lab	1	will	be	posted	on	the	website	
today.	Prepare	for	it	over	the	weekend.

• HW1	has	been	posted.	Ask	questions	about	it	on	
piazza.	Or	get	help	during	the	lab	or	during	OH.	

25

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

26

Typed	Functions	in	C

int number_of_people ()
{

return 3;
}

float dollars_and_cents ()
{

return 10.33;
}

int sum (int x, int y)
{

return x + y;
}

• You	have	to	declare	the	type	of	
data	you	plan	to	return	from	a	
function

• Return	type	can	be	any	C	
variable	type,	and	is	placed	to	
the	left	of	the	function	name

• You	can	also	specify	the	return	
type	as	void
– Just	think	of	this	as	saying	that	no	value	

will	be	returned
• Also	necessary	to	declare	types	

for	values	passed	into	a	function
• Variables	and	functions	MUST	be	

declared	before	they	are	used

27

Structs in	C
• Structs are	structured	groups	of	

variables,	e.g.,	

typedef struct {
int length_in_seconds;
int year_recorded;

} Song;

Song song1;

song1.length_in_seconds = 213;
song1.year_recorded = 1994;

Song song2;

song2.length_in_seconds = 248;
song2.year_recorded = 1988;

28

Dot	notation:	x.y = value

A	First	C	Program:	Hello	World
Original C:

main()
{

printf("\nHello World\n");
}

ANSI Standard C:

#include <stdio.h>

int main(void)
{

printf("\nHello World\n");
return 0;

}

29

C	Syntax:	main

• When	C	program	starts
– C	executable	a.out is	loaded	into	memory	by	
operating	system	(OS)

– OS	sets	up	stack,	then	calls	into	C	runtime	library,
– Runtime	1st initializes	memory	and	other	libraries,
– then	calls	your	procedure	named	main	()

• We’ll	see	how	to	retrieve	command-line	
arguments	in	main()	later…

30

A	Second	C	Program:
Compute	Table	of	Sines

#include <stdio.h>

#include <math.h>

int main(void)
{

int angle_degree;
double angle_radian, pi, value;
/* Print a header */

printf("\nCompute a table of the
sine function\n\n");

/* obtain pi once for all */
/* or just use pi = M_PI, where */
/* M_PI is defined in math.h */
pi = 4.0*atan(1.0);

printf("Value of PI = %f \n\n",
pi);

printf("angle Sine \n");

angle_degree = 0;
/* initial angle value */
/* scan over angle */
while (angle_degree <= 360)
/* loop until angle_degree > 360 */

{

angle_radian = pi*angle_degree/180.0;
value = sin(angle_radian);
printf (" %3d %f \n ",

angle_degree, value);
angle_degree = angle_degree + 10;
/* increment the loop index */

}
return 0;

}

31

Second	C	Program
Sample	Output

Compute a table of the sine
function

Value of PI = 3.141593

angle Sine
0 0.000000

10 0.173648
20 0.342020
30 0.500000
40 0.642788
50 0.766044
60 0.866025
70 0.939693
80 0.984808
90 1.000000
100 0.984808
110 0.939693
120 0.866025
130 0.766044
140 0.642788
150 0.500000
160 0.342020
170 0.173648
180 0.000000

190 -0.173648
200 -0.342020
210 -0.500000
220 -0.642788
230 -0.766044
240 -0.866025
250 -0.939693
260 -0.984808
270 -1.000000
280 -0.984808
290 -0.939693
300 -0.866025
310 -0.766044
320 -0.642788
330 -0.500000
340 -0.342020
350 -0.173648
360 -0.000000

32

C	Syntax:	Variable	Declarations

• All	variable	declarations	must	appear	before	they	
are	used	(e.g.,	at	the	beginning	of	the	block)	

• A	variable	may	be	initialized	in	its	declaration;	
if	not,	it	holds	garbage!

• Examples	of	declarations:
– Correct: {

int a = 0, b = 10;
...

− Incorrect: for (int i = 0; i < 10; i++)
}

33
Newer	C	standards	are	more	flexible	about	this,	more	later

C	Syntax	:	Control	Flow	(1/2)
• Within	a	function,	remarkably	close	to	Java	
constructs	in	terms	of	control	flow
– if-else

• if (expression) statement
• if (expression) statement1
else statement2

– while
• while (expression)

statement
• do

statement
while (expression);

34

C	Syntax	:	Control	Flow	(2/2)

– for
• for (initialize; check; update)
statement

– switch
• switch (expression){

case const1: statements
case const2: statements
default: statements

}
• break

35

C	Syntax:	True	or	False

• What	evaluates	to	FALSE	in	C?
– 0	(integer)
– NULL	(a	special	kind	of	pointer:	more	on	this	later)
– No	explicit	Boolean	type

• What	evaluates	to	TRUE	in	C?
– Anything	that	isn’t	false	is	true
– Same	idea	as	in	Python:	only	0s	or	empty	
sequences	are	false,		anything	else	is	true!

36

C	operators

• arithmetic:	+,	-,	*,	/,	%
• assignment:	=
• augmented	assignment:	
+=,	-=,	*=,	/=,	%=,	&=,	
|=,	^=,	<<=,	>>=

• bitwise	logic:	~,	&,	|,	^
• bitwise	shifts:	<<,	>>
• boolean logic:	!,	&&,	||
• equality	testing:	==,	!=

• subexpression
grouping:	()

• order	relations:	<,	<=,	>,	
>=

• increment	and	
decrement:	++	and	--

• member	selection:	.,	->
• conditional	evaluation:	
?	:

37

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

38

iPhone6	Teardown
fixit.com

39

40

The	A8	is	manufactured	on	a	
20 nm	process	by	TSMC.	It	
contains	2	billion	 transistors.	 Its	
physical	size	is	89 mm^2.] It	has	
1 GB	of	LPDDR3	RAM	included	 in	
the	package.		It	is	dual	core,	and	
has	a	frequency	of	1.38 GHz.

41

42

43

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

44

Address	vs.	Value
• Consider	memory	to	be	a	single	huge	array
– Each	cell	of	the	array	has	an	address	associated	
with	it

– Each	cell	also	stores	some	value
– For	addresses	do	we	use	signed	or	unsigned	
numbers?	Negative	address?!

• Don’t	confuse	the	address	referring	to	a	
memory	location	with	the	value	stored	there

45

23 42 101 102	103	104	105	...

Pointers
• An	address	refers	to	a	particular	memory	
location;	e.g.,	it	points	to	a	memory	location

• Pointer:	A	variable	that	contains	the	address	
of	a	variable

46

23 42 101	102	103	104	105	...

x y

Location	(address)

name
p

104

Pointer	Syntax

• int *x;
– Tells	compiler	that	variable	x is	address	of	an	int

• x = &y;
– Tells	compiler	to	assign	address	of	y to	x
– & called	the	“address	operator”	in	this	context

• z = *x;
– Tells	compiler	to	assign	value	at	address	in	x to	z
– * called	the	“dereference	operator”	in	this	context

47

Creating	and	Using	Pointers

48

• How	to	create	a	pointer:
& operator:	get	address	of	a	variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

•How	get	a	value	pointed	to?
“*” (dereference	operator):	get the	value	that	the	pointer	points	to

printf(“p points to %d\n”,*p);

Note	the	“*”	gets	used	
2	different	ways	in	this	
example.		In	the		
declaration	to	indicate	
that	p is	going	to	be	a	
pointer,		and	in	the	
printf to	get	the	
value	pointed	to	by	p.

Using	Pointer	for	Writes

• How	to	change	a	variable	pointed	to?
– Use	the	dereference	operator	* on	left	of	
assignment	operator	=

49

p x 5*p = 5;

p x 3

Pointers	and	Parameter	Passing
• C	passes	parameters	“by	value”
– Procedure/function/method	gets	a	copy	of	the	
parameter,	so	changing	the	copy	cannot	change	the	
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains	equal	to	3

50

Pointers	and	Parameter	Passing
• How	can	we	get	a	function	to	change	the	value	
held	in	a	variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is	now	equal	to	4

51

What	would	you	use	in	C++?

Call	by	reference:
void	add_one (int &p)	{
p	=	p	+	1;				//	or		p	+=	1;

}

Types	of	Pointers

• Pointers	are	used	to	point	to	any	kind	of	data	
(int,	char,	a	struct,	etc.)

• Normally	a	pointer	only	points	to	one	type	
(int,	char,	a	struct,	etc.).
– void * is	a	type	that	can	point	to	anything	
(generic	pointer)

– Use	void * sparingly	to	help	avoid	program	bugs,	
and	security	issues,	and	other	bad	things!

52

More	C	Pointer	Dangers
• Declaring	a	pointer	just	allocates	space	to	hold	
the	pointer	– it	does	not	allocate	the	thing	
being	pointed	to!

• Local	variables	in	C	are	not	initialized,	they	
may	contain	anything	(aka	“garbage”)

• What	does	the	following	code	do?

53

void f()
{

int *ptr;
*ptr = 5;

}

Pointers	and	Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr).x;

/* This works too */
p1 = p2;

54

Pointers	in	C
• Why	use	pointers?
– If	we	want	to	pass	a	large	struct or	array,	it’s	easier	/	
faster	/	etc.	to	pass	a	pointer	than	the	whole	thing

– In	general,	pointers	allow	cleaner,	more	compact	code

• So	what	are	the	drawbacks?
– Pointers	are	probably	the	single	largest	source	of	bugs	
in	C,	so	be	careful	anytime	you	deal	with	them
• Most	problematic	with	dynamic	memory	management—
coming	up	next	week

• Dangling	references	and	memory	leaks

55

Why	Pointers	in	C?
• At	time	C	was	invented	(early	1970s),	compilers	
often	didn’t	produce	efficient	code
– Computers	25,000	times	faster	today,	compilers	better

• C	designed	to	let	programmer	say	what	they	want	
code	to	do	without	compiler	getting	in	way
– Even	give	compilers	hints	which	registers	to	use!

• Today’s	compilers	produce	much	better	code,	so	
may	not	need	to	use	pointers	in	application	code

• Low-level	system	code	still	needs	low-level	access	
via	pointers

56

57

Quiz:	Pointers
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

58

A:	a=3 b=2 c=1
B:	a=1 b=2 c=3
C:	a=1 b=3 c=2
D:	a=3 b=3 c=3
E:	a=1 b=1 c=1

Result	is:

C	Arrays

• Declaration:
int ar[2];
declares	a	2-element	integer	array:	just	a	block	of	
memory	

int ar[] = {795, 635};

declares	and	initializes	a	2-element	integer	array

59

C	Strings
• String	in	C	is	just	an	array	of	characters

char string[] = "abc";

• How	do	you	tell	how	long	a	string	is?
– Last	character	is	followed	by	a	0	byte	
(aka	“null	terminator”)

60

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array	Name	/	Pointer	Duality
• Key	Concept:	Array	variable	is	a	“pointer”	to	the	first	
(0th)	element

• So,	array	variables	almost	identical	to	pointers
– char *string and	char string[] are	nearly	
identical	declarations

– Differ	in	subtle	ways:	incrementing,	declaration	of	filled	
arrays

• Consequences:
– ar is	an	array	variable,	but	works	like	a	pointer
– ar[0] is	the	same	as	*ar
– ar[2] is	the	same	as	*(ar+2)
– Can	use	pointer	arithmetic	to	conveniently	access	arrays

61

Changing	a	Pointer	Argument?

• What	if	want	function	to	change	a	pointer?
• What	gets	printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

Pointer	to	a	Pointer

• Solution!	Pass	a	pointer	to	a	pointer,	declared	
as	**h

• Now	what	gets	printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

C	Arrays	are	Very	Primitive
• An	array	in	C	does	not	know	its	own	length,	
and	its	bounds	are	not	checked!
– Consequence:	We	can	accidentally	access	off	the	
end	of	an	array

– Consequence:	We	must	pass	the	array	and	its	size	
to	any	procedure	that	is	going	to	manipulate	it

• Segmentation	faults	and	bus	errors:
– These	are	VERY	difficult	to	find;	
be	careful!	

64

Use	Defined	Constants
• Array	size	n;	want	to	access	from	0 to	n-1,	so	you	should	use	

counter	AND	utilize	a	variable	for	declaration	&	incrementation
– Bad	pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better	pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE	SOURCE	OF	TRUTH
– You’re	utilizing	indirection	and	avoiding	maintaining	two	copies	of	the	

number	10
– DRY:	“Don’t	Repeat	Yourself”

65

Pointing	to	Different	Size	Objects
• Modern	machines	are	“byte-addressable”

– Hardware’s	memory	composed	of	8-bit	storage	cells,	each	has	a	
unique	address

• A	C	pointer	is	just	abstracted	memory	address
• Type	declaration	tells	compiler	how	many	bytes	to	fetch	on	
each	access	through	pointer
– E.g.,	32-bit	integer	stored	in	4	consecutive	8-bit	bytes

66

424344454647484950515253545556575859

int *x

32-bit	integer	
stored	in	four	bytes

short *y

16-bit	short	stored	
in	two	bytes

char *z

8-bit	character	
stored	in	one	byte

Byte	address

sizeof()	operator

• sizeof(type)	returns	number	of	bytes	in	object
– But	number	of	bits	in	a	byte	is	not	standardized
• In	olden	times,	when	dragons	roamed	the	earth,	bytes	
could	be	5,	6,	7,	9	bits	long

• By	definition,	sizeof(char)==1
• Can	take	sizeof(arr),	or	sizeof(structtype)
• We’ll	see	more	of	sizeof when	we	look	at	
dynamic	memory	management

67

68

Pointer	Arithmetic
pointer +	number pointer – number
e.g.,	pointer + 1 adds	1	something to	a	pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In	each,	p now	points	to	b
(Assuming	compiler	doesn’t	
reorder	variables	in	memory.	
Never	code	like	this!!!!)

Adds	1*sizeof(char)
to	the	memory	address

Adds	1*sizeof(int)
to	the	memory	address

Pointer	arithmetic	should	be	used	cautiously

69

Arrays	and	Pointers

• Array	≈ pointer	to	the	initial	(0th)	array
element

a[i] ≡ *(a+i)

• An	array	is	passed	to	a	function	as	a	pointer
– The	array	size	is	lost!

• Usually	bad	style	to	interchange	arrays	and
pointers
– Avoid	pointer	arithmetic!

Really int *array

int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays:

70

Arrays	and	Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)

{
int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What	does	this	print?

What	does	this	print?

8

40

...	because	array is	really
a	pointer	(and	a	pointer	 is	
architecture	dependent,	 but		
likely	to	be	8	on	modern
machines!)

71

Arrays	and	Pointers

int i;
int array[10];

for (i = 0; i < 10; i++)
{
array[i] = …;

}

int *p;
int array[10];

for (p = array; p < &array[10]; p++)
{
*p = …;

}

These	code	sequences	have	the	same	effect!

