
CS	110
Computer	Architecture	

Lecture	8:	
Synchronous	Digital	Systems	

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

2

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
3

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Today

You	are	Here!

Hardware	Design
• Next	several	weeks:	how	a	modern	processor	is	built,	

starting	with	basic	elements	as	building	blocks
• Why	study	hardware	design?

– Understand	capabilities	and	limitations	of	HW	in	general	and	
processors	in	particular

– What	processors	can	do	fast	and	what	they	can’t	do	fast	
(avoid	slow	things	if	you	want	your	code	to	run	fast!)

– Background	for	more	in-depth	HW	courses	
– Hard	to	know	what	you’ll	need	for	next	30	years
– There	is	only	so	much	you	can	do	with	standard	processors:	you	

may	need	to	design	own	custom	HW	for	extra	performance
– Even	some	commercial	processors	today	have	customizable	hardware!

4

Synchronous	Digital	Systems

5

Synchronous:
• All	operations	coordinated	by	a	central	clock

§ “Heartbeat”	of	the	system!

Digital:
• Represent	all	values by	discrete	values
• Two	binary	digits:	1	and	0
• Electrical	signals	are	treated	as	1’s	and	0’s

• 1	and	0	are	complements	of	each	other
• High /low voltage	for	true /	false,	1 /	0

Hardware	of	a	processor,	 such	as	the	MIPS,	is	an	example	of	
a	Synchronous	Digital	System

A Z

Switches:	Basic	Element	of	Physical	
Implementations

• Implementing	a	simple	circuit	(arrow	shows	action	if	
wire	changes	to	“1”	or	is	asserted):

Z ≡ A

A Z

6

On-switch	(if	A	is	“1”	or	asserted)
turns-on	light	bulb	(Z)

Off-switch	(if	A	is	“0”	or	
unasserted)	turns-off	light	
bulb	(Z)

AND

OR

Z ≡ A and B

Z ≡ A or B

A B

A

B

Switches	(cont’d)

• Compose	switches	into	more	complex	ones	(Boolean	
functions):

7

Historical	Note

• Early	computer	designers	built	ad	hoc	circuits	
from	switches

• Began	to	notice	common	patterns	in	their	work:	
ANDs,	ORs,	…

• Master’s	thesis	(by	Claude	Shannon,	1940)	made	
link	between	work	and	19th Century	
Mathematician	George	Boole
– Called	it	“Boolean”	in	his	honor

• Could	apply	math	to	give	theory	to	
hardware	design,	minimization,	…

8

Transistors
• High	voltage	(Vdd)	represents	1,	or	true

– In	modern	microprocessors,	Vdd ~	1.0	Volt	
• Low	voltage	(0	Volt	or Ground)	represents	0,	or	false
• Pick	a	midpoint	voltage	to	decide	if	a	0	or	a	1

– Voltage	greater	than	midpoint	=	1
– Voltage	less	than	midpoint	=	0
– This	removes	noise	as	signals	propagate	– a	big	advantage	of	

digital	systems	over	analog	systems
• If one	switch	can	control	another	switch,	we	can	build	a	

computer!
• Our	switches:	CMOS	transistors

9

CMOS	Transistor	Networks
• Modern	digital	systems	designed	in	CMOS
– MOS:	Metal-Oxide	on	Semiconductor
– C	for	complementary: use	pairs	of	normally-on and	
normally-off switches

• CMOS	transistors	act	as	voltage-controlled	
switches
– Similar,	though	easier	to	work	with,	than	electro-
mechanical	relay	switches	from	earlier	era	

– Use	energy	primarily	when	switching	

10

n-channel transitor
off when voltage at Gate is low

on when:
voltage(Gate) > voltage (Threshold)

p-channel transistor
on when voltage at Gate is low

off when:
voltage(Gate) > voltage (Threshold)

CMOS	Transistors
• Three	terminals: source,	gate,	and	drain
– Switch	action:
if	voltage	on	gate	terminal	is	(some	amount)	higher/lower	
than	source	terminal	then	conducting	path	established	
between	drain	and	source	terminals	(switch	is	closed)

Gate

Source Drain

Gate

Source Drain

11

Note	circle	symbol	
to	indicate	“NOT”	
or	“complement”

Gate

DrainSource

field-effect	transistor	(FET)	=>	CMOS	circuits	use	a	combination	of	p-type	and	n-type	
metal–oxide–semiconductor	 field-effect	transistors	=>

MOSFET	

12

Gordon	Moore
Intel	Cofounder

#	
of
	tr
an

si
st
or
s	o

n	
an

in
te
gr
at
ed

	ci
rc
ui
t	(
IC
)

Year

#2:	Moore’s	Law

Predicts:	
2X	Transistors	/	chip	

every	2	years

Modern	microprocessor	chips	
include	several	billion	transistors

Intel	14nm	Technology

13
Plan	view	of	transistors

Side	view	of	wiring	 layers

Sense	of	Scale

14

Source:	Mark	Bohr,	 IDF14

CMOS	Circuit	Rules
• Don’t	pass	weak	values	=>	Use	Complementary	Pairs

– N-type	transistors	pass	weak	1’s	(Vdd - Vth)
– N-type	transistors	pass	strong	0’s	(ground)
– Use	N-type	transistors	only	to	pass	0’s	(N	for	negative)
– Converse	for	P-type	transistors:	Pass	weak	0s,	strong	1s

• Pass	weak	0’s	(Vth),	strong	1’s	(Vdd)
• Use	P-type	transistors	only	to	pass	1’s	(P	for	positive)

– Use	pairs	of	N-type	and	P-type	to	get	strong	values
• Never	leave	a	wire	undriven

– Make	sure	there’s	always	a	path	to	Vdd or	GND

• Never	create	a	path	from	Vdd to	GND	(ground)
– This	would	short-circuit	the	power	supply!

15

1V

X

Y 0	Volt
(GND)

x y

1 Volt
(Vdd)

0V

what		is	the	
relationship	

between	x	and	y?

CMOS	Networks

16

p-channel transistor
on when voltage at Gate is low

off when:
voltage(Gate) > voltage (Threshold)

n-channel transitor
off when voltage at Gate is low

on when:
voltage(Gate) > voltage (Threshold) Called	an	inverter	or	not	gate

1 Volt	 (Vdd)

0	Volt	 (GND)

what is the
relationship between x, y and z?

Two-Input	Networks

1V

X Y

0V

Z

17

x y z

0 Volt

1 Volt

0 Volt

1 Volt

0 Volt

0 Volt
1 Volt

1 Volt

1 Volt

1 Volt

1 Volt

0 Volt

Called	a	NAND	gate	
(NOT	AND)

x y

0	Volt

1	Volt

0	Volt

1	Volt

0	Volt

0	Volt

1	Volt

1	Volt

Clickers/Peer	Instruction

1V

X Y

0v

Z

18

Volts

Volts

Volts

Volts

z

0 0 1

0 1 0

0 1 0 1

1 1 0 0

A B C

Administrivia

• Final	HW1	scores	will	be	published	next	week:
–We	will	by	hand	take	a	quick	look	and	deduct	
points	for	bugs,	e.g.
• Memory	leaks
• reverse_list changing	the	provided	list
• Empty	or	meaningless	comments

• Project	1.1	test	cases	will	be	updated	latest	
Monday	– grading	similar	to	above
– 11	groups	did	not	register	their	group	e-mail	yet!
– 8	groups	have	registrations	pending	in	gradebot!

19

Administrivia
• Bug	in	HW3	grading	script	…
• In	Lab	8:
– Your	project	team	explains	the	TA	and	Prof	your	
projects	1.1	and	1.2

– Both	of	you	should	know	your	software	well
– If	we	find	one	of	you	clearly	did	contribute	much	less,	
we	will	reduce	that	students	points	a	little

• Check	out	the	additional	material	provided	by	UC	
Berkeley:
– http://inst.eecs.berkeley.edu/~cs61c/resources/sds.pdf
– http://inst.eecs.berkeley.edu/~cs61c/resources/boolean.pdf

20

Policy	on	Assignments	and	
Independent	Work

• ALL	PROJECTS	WILL	BE	DONE	WITH	A	PARTNER
• With	the	exception	of	laboratories	and	assignments	that	explicitly	permit	you	to	

work	in	groups,	 all	homework	and	projects	are	to	be	YOUR	work	and	your	work	
ALONE.

• PARTNER	TEAMS	MAY	NOT	WORK	WITH	OTHER	PARTNER	TEAMS
• You	are	encouraged	 to	discuss	your	assignments	with	other	students,	and	credit	will	

be	assigned	to	students	who	help	others,	particularly	by	answering	questions	on	
Piazza,	but	we	expect	that	what	you	hand	in	is	yours.

• It	is	NOT	acceptable	to	copy	solutions	 from	other	 students.
• It	is	NOT	acceptable	to	copy	(or	 start	your)	 solutions	 from	the	Web.	
• It	is	NOT	acceptable	to	use	PUBLIC	github archives	(giving	 your	answers	away)
• We	have	tools	and	methods,	 developed	over	many	years,	for	detecting	this.	You	

WILL	be	caught,	and	the	penalties	WILL	be	severe.	
• At	the	minimum	F	in	the	course,	and	a	letter	to	your	university	record	documenting	

the	incidence	of	cheating.
• Both	Giver	and	Receiver	are	equally	culpable	and	suffer	equal	penalties

21

• Common	combinational	logic	
systems	have	standard	symbols	
called	logic	gates

– Buffer,	NOT

– AND,	NAND

– OR,	NOR

Combinational	Logic	Symbols

Z

A
B Z

Z

A

A
B

Inverting	versions	(NOT,	NAND,	NOR)	easiest	

to	implement with	CMOS	transistors (the	

switches	 we	have	available	and	use	most)

22

1V

X Y

0V

1V

X
Y

0V

Remember…

•AND
•OR

23

Boolean	Algebra

• Use	plus	“+”	for	OR
– “logical	sum”	 1+0	=	0+1	=	1	(True);	1+1=2	(True);	0+0	=	0	(False)

• Use	product	for	AND	(a�b or	implied	via	ab)
– “logical	product”									0*0	=	0*1	=	1*0	=	0	(False);	1*1	=	1	(True)

• “Hat”	to	mean	complement	(NOT)	
• Thus
ab +	a	+	c

=	 a�b +	a	+	c
=	 (a	AND	b)	OR	a	OR	(NOT	c)

24

Truth	Tables
for	Combinational	Logic

25

F Y

A
B

C
D

0

Exhaustive	list	of	the	output	value	
generated	for	each	combination	of	inputs

How	many	logic	functions	can	be	defined	
with	N	inputs?	

Truth	Table	Example	#1:	
y=	F(a,b):	1	iff a	≠	b

a b y
0 0 0
0 1 1
1 0 1
1 1 0

26

Y	=	A	B		+		A	B

Y	=	A		+		B

XOR

Truth	Table	Example	#2:	
2-bit	Adder

27

How
Many
Rows?

+ C1

A1
A0

B1
B0

C2

C0

Truth	Table	Example	#3:	
32-bit	Unsigned	Adder

28

How
Many
Rows?

Truth	Table	Example	#4:	
3-input	Majority	Circuit

29

Y	=	A	B	C		+		A	B	C			+		A	B	C		+		A	B	C

Y	=	B	C		+		A	(B	C			+		B	C)

Y	=	B	C		+		A	(B	+	C)

This	is	called	Sum	of	Products	 form;
Just	another	way	to	represent	the	TT
as	a	logical	expression

More	simplified	forms	
(fewer	gates	and	wires)

Boolean	Algebra:	Circuit	&	Algebraic	
Simplification

30

Representations	of	Combinational	
Logic	(groups	of	logic	gates)

Truth	Table

Gate	DiagramBoolean	Expression

Sum	of	
Products,
Product	of	Sums	
Methods

Enumerate	
Inputs

Enumerate	
Inputs

Use	Equivalency	between	
boolean	operators	and	

gates

Laws	of	Boolean	Algebra

32

X	X	=	0
X	0	=	0
X	1	=	X
X	X	=	X
X	Y	=	Y	X

(X	Y)	Z	=	Z	(Y	Z)
X	(Y	+	Z)	=	X	Y	+	X	Z

X	Y	+	X	=	X
X	Y	+	X	=	X	+	Y
X	Y	=	X	+	Y

X	+		X	=	1
X	+	1	=	1
X	+	0	=	X
X	+	X	=	X

X	+	Y	=	Y	+	X
(X	+	Y)	+	Z	=	Z	+	(Y	+	Z)
X	+	Y	Z	=	(X	+	Y)	(X	+	Z)

(X	+	Y)	X	=	X
(X	+	Y)	X	=	X	Y
X	+	Y	=	X	Y

Complementarity
Laws	of	0’s	and	1’s

Identities
Idempotent	Laws
Commutativity
Associativity
Distribution

Uniting	Theorem
Uniting	Theorem	v.	2
DeMorgan’s Law

Boolean	Algebraic	Simplification	
Example

33

Boolean	Algebraic	Simplification	
Example

34

a	b c y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Question

• Simplify	Z	=	A+BC	+	A(BC)

• A:	 Z	=	0
• B:	 Z	=	A(1+	BC)
• C:			Z	=	(A	+	BC)
• D:		Z	=	BC
• E:			Z	=	1

35

In	the	News:	Googles	AlphaGo beats	
world	champion	Lee	Sedol

• Google	wins	4:1
• Go:	maybe	200	possible	moves	per	turn
– 250	or	more	turns
– even	200150 is	about	infinite
(chess:	about	3580)

• Monte	Carlo	Tree	Search	
(MCTS)	and	Machine	
Learning	(Neural	Networks)

• 1202	CPUs	und	176	GPU	
(or more)

• Onemillion USD	prize

36

Signals	and	Waveforms
an-1 an-1 a0

Noisy!
Delay!

Signals	and	Waveforms:	Grouping

Signals	and	Waveforms:	Circuit	Delay

2

3

3 4 5

10 0 1

5 13 4 6

Sample	Debugging	Waveform

Type	of	Circuits
• Synchronous	Digital	Systems	consist	of	two	
basic	types	of	circuits:
• Combinational	Logic	(CL)	circuits

–Output	is	a	function	of	the	inputs	only,	not	the	history	
of	its	execution
– E.g.,	circuits	to	add	A,	B	(ALUs)

• Sequential	Logic	(SL)
• Circuits	that	“remember”	or	store	information
• aka	“State	Elements”
• E.g.,	memories	and	registers	(Registers)

41

Uses	for	State	Elements

• Place	to	store	values	for	later	re-use:
– Register	files	(like	$1-$31	in	MIPS)
– Memory	(caches	and	main	memory)

• Help	control	flow	of	information	between	
combinational	 logic	blocks
– State	elements	hold	up	the	movement	of	
information	at	input	to	combinational	logic	blocks	
to	allow	for	orderly	passage

42

Accumulator	Example

Want: S=0;
for (i=0;i<n;i++)

S = S + Xi

Why	do	we	need	to	control	the	flow	of	information?

Assume:
• Each	X	value	is	applied	in	succession,	one	per	cycle
• After	n	cycles	the	sum	is	present	on	S

43

SUMXi S

First	Try:	Does	this	work?

44

No!
Reason	#1:	How	to	control	the	next	iteration	of	
the	‘for’	loop?
Reason	#2:	How	do	we	say:	‘S=0’?

Feedback

Second	Try:	How	About	This?

45

Rough
timing	…

Register	is	used	to	
hold	up	the	transfer	
of	data	to	adder

Time

High	 (1)
Low	(0)

High	 (1)
Low	(0)

Rounded	Rectangle	per	clock	means	could	be	1	or	0

High	 (1)
Low	(0)

Square	wave	clock	sets	when	things	change

Second	Try:	How	About	This?

46

Rough
timing	…

Register	is	used	to	
hold	up	the	transfer	
of	data	to	adder

Rounded	Rectangle	per	clock	means	could	be	1	or	0

Xi	must	be	ready	before	clock	edge	due	 to	adder	delay

Square	wave	clock	sets	when	things	change

High	 (1)
Low	(0)

High	 (1)
Low	(0)

High	 (1)
Low	(0)

Model	for	Synchronous	Systems

47

• Collection	of Combinational	Logic	blocks	separated	by	registers
• Feedback	is	optional
• Clock	signal(s)	connects	only	to	clock	input	of	registers
• Clock	(CLK):	steady	square	wave	that	synchronizes	the	system
• Register:	several	bits	of	state	that	samples	on	rising	edge	of	CLK	
(positive	edge-triggered)	or	falling	edge	(negative	edge-triggered)

