CS 110
Computer Architecture
Review for Midterm |

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Midterm |

Date: Friday, Apr. 8
Time: 10:15 - 11:55 (normal lecture slot)
Venue: H2 109 + H2 103

One table per student
Closed book:

— You can bring one A4 page with notes (both sides;
Chinese is OK): Write you Chinese and pingying
name on the top!

— You will be provided with the MIPS “green sheet”
— No other material allowed!

Midterm |

Switch cell phones off! (not silent mode — offl)
— Put them in your bags.

Bags under the table. Nothing except paper, pen,
1 drink, 1 snack on the table!

No other electronic devices are allowed!

— No ear plugs, music, ...

Anybody touching any electronic device will FAIL
the course!

Anybody found cheating (copy your neighbors
answers, additional material, ...) will FAIL the

course!

Midterm |

Ask questions today!

Next weeks discussion is Q&A session
— Suggest topics for review in piazza!

This review session does not/ can not cover all
possible topics!

Please answer the polls —anonymous!

Lab next Monday

* No Lab on Monday (April 4)
* Do your lab-work...
* Check-off and help options:

— Beginning of next weeks Lab
— OH of Zhu Chen K/= and Xu Qingwen #RHIG
— Lab 2 and 3 (Tuesday, Thursday 3pm)

il

Old School Machine Structures

Application (ex: browser)

Circuit Design

transistors

New-School Machine Structures
(It’s a bit more compllcatedl)

Software Hardware
Parallel Requests
Warehouse

Assigned to computer Scale &
e.g., Search “cats” Computer §

Harness
Parallel Threads 5 fc/icm &
Assigned to core Achieve High
e.g., Lookup, Ads Perfarmance

Parallel Instructions

>1 instruction @ one time

A\
N
0O
)
(@)
>
L3
=
<
)
&
w

Memory _.-
£

“*é%?wg.g,
e.g., 5 pipelined instructions /

> \
I nput»/Oﬁtput \
Parallel Data / Core \

uctlon Umt(// Bl:]?&zlfncy

o+BoA;+B ,+B, A3;+B;

>1 data item @ one time
e.g., Add of 4 pairs of words

5%5«‘4

Hardware descriptions =
Main Memory / ’ !
> l

All gates functioning in

parallel at same time / 4 Logic Gates
:::?/ Project 2
/]

6 Great Ideas in Computer Architecture

1. Abstraction
(Layers of Representation/Interpretation)

2. Moore’s Law (Designing through trends)

3. Principle of Locality (Memory Hierarchy)

4. Parallelism

5. Performance Measurement & Improvement
6. Dependability via Redundancy

2: Moore’s Law

1010
HUMAN
1o BRAIN
ELECTROMECHANICAL SOLID- VACUUM TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
100 RELAY
MOUSE
CORE i7 QUAD) BRAIN
100 = 1 .
§ P rEd | CtS . PENTIUM 4 OQCORE 2DUO
> . . PENTIUM m'
LA 2X Transistors / chip PENTIUM I Semeat,
& COMPAQ DNA
DESKPRO 386 COMPUTING?
10 |8 every 2 years - & -
9 ALTAIR 8800 ‘ PENTIUM
@ IBM 1130 Q
w 10¢ |- z IBM AT-80286
prs DEC PDP-1 &
g ’ IBM PC
e 10
< UNIVAC | @ ©Ooec APPLEN
> PDP-10
5
&1 0 | | 1 | | | | | | 1 | | 1 | 1 | |
3] COLOSSUS
2 - IBM ssec 'BM704
102 |- TABULATOR
HOLLERITH
'rAsugTon e L :
104 [~ € naTONAL CALCULATOR Gordon Moore
MODEL 1
ELLIS 3000
ANALYTICAL ENGINE Intel Cofounder
o g o w o n o wn o wn o n o wn o wn o wn o wn o wn o wn o wn
85 555883488385 58¢888388¢8 888

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 9
2012 REPRESENT BCA ESTIMATES.

Great Idea #3: Principle of Locality/
Memory Hierarchy

Processor SUPER FAST
SUPER EXPENSIVE
_ TINY CAPACITY

REGISTER
m\ EXPENSIVE

. \ e
y. LEVEL 1 (L1) CACHE SMALL CAPACITY
EDO, SD-RAM, DDR-SDRAM, RD-RAM FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY
SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
| iR

4
y NON-VOLATILE FLASH-BASED MEMORY \
// b

Mechanical Hard Drives VIRTUAL MEMORY SLOW
; \ CHEAP
/ e) LARGE CAPACTITY

£ \
1'/ \\

Great Idea #4: Parallelism

Jane

Research

Composing Typing

<

Sue

Research

Composing Typing

Tom

<

- -
— —

Research

Composing Typing

o

NN NINE NN

IENENINENENENEEN]

1

(BN
(BN

Great Idea #5: Performance
Measurement and Improvement

 Tuning application to underlying hardware to
exploit:
— Locality
— Parallelism
— Special hardware features, like specialized instructions
(e.g., matrix manipulation)
* Latency
— How long to set the problem up
— How much faster does it execute once it gets going
— Itis all about time to finish

12

Great Idea #6:
Dependability via Redundancy

 Redundancy so that a failing piece doesn’t
make the whole system fail

2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy
13

Key Concepts

* Inside computers, everything is a number

 But numbers usually stored with a fixed size
— 8-bit bytes, 16-bit half words, 32-bit words, 64-bit
double words, ...
* Integer and floating-point operations can lead
to results too big/small to store within their
representations: overflow/underflow

Number Representation

Number Representation

* Value of i-th digit is d x Base' where i starts at O
and increases from right to left:
e 123,,=1,3x10% + 2,4 x 10,41 + 3, x 10,°
= 1x100,, + 2x10,, + 3x1,,
= 10045 + 20,5 + 34
=123,
* Binary (Base 2), Hexadecimal (Base 16), Decimal
(Base 10) different ways to represent an integer

— We use 1., Sten, 1040, t0 be clearer
(vs.1,, 4g, 550, 104¢)

16

Number Representation

Hexadecimal digits:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

FFFhex = 15¢enX 161eq” + 15:¢0X 16" + 15¢nX 16’
- 384Oten + 24Oten + 15ten
= 4095,,,

1111 1111 1111, = FFF,,, = 4095,

May put blanks every group of binary, octal, or
hexadecimal digits to make it easier to parse, like
commas in decimal

two

Signed Integers and
Two’s-Complement Representation

Signed integers in C; want 72 numbers <0, want %
numbers >0, and want one O

Two’s complement treats O as positive, so 32-bit
word represents 23 integers from
-231(-2,147,483,648) to 23'-1 (2,147,483,647)

— Note: one negative number with no positive version
— Book lists some other options, all of which are worse
— Every computer uses two’s complement today
Most-significant bit (leftmost) is the sign bit,

since 0 means positive (including 0), 1 means
negative

— Bit 31 is most significant, bit O is least significant

18

Two’s-Complement Integers

Sign Bit
0D00 0000 0000 0000 0000 0000 0000 0000,

0PDOO 0000 0000 0000 0000 0000 0000 0001,,,,
0PDOO 0000 0000 0000 0000 0000 0000 0010y,

111111 117111111 1171111171 1111 1101,
1111111171 1111 1717111171 11711 11104,
111111 117111111 117111111 1111 11113,

= 0ten
= 1ten
= 2ten

=2,147,483,645,,,
=2,147,483,646,,,
=2,147,483,647,,,

00 0000 0000 0000 0000 0000 0000 0000y,
00 0000 0000 0000 0000 0000 0000 0001,,,
00 0000 0000 0000 0000 0000 0000 0010,

P P P, O O O

(Y

1111111171 1111 1717111171 11711 11104,
11171 1111111117111 11171 171711111171 1111

1111 11111111 117111111 1111 1111 1101,,, =

two —

=2,147,483,648,,,
=—2,147,483,647,,,
=—2,147,483,646,,,

= _3ten
= _zten
= _1ten

19

Ways to Make Two’s Complement

* For N-bit word, complementto 2, "

— For 4 bit number 3,.,,=0011,,,,, two’s complement

(i.e. -3,) would be

16,.-3;en=13,., OF 10000,,,, — 0011,,, = 1101,,,

* Here is an easier way: 3., 0011,

— Invert all bits and add 1 -
Bitwise complement 1100,,,

+ 1two

— Computers actually do it like this, too -3ten 1101,

20

Two’s-Complement Examples

* Assume for simplicity 4 bit width, -8 to +7

represented
3 0011 3 0011 -3 1101
+2 0010 +(-2) 1110 +(-2) 1110
5 0101 1 10001 -51 1011
Overflow when
magnitude of result
too big small to fit 7 0111 -8 100
into result +1 0001 +(-1) 1111

—_— Carry into MSB =
representation -8 1000 +7 10111 Carry Out MSB

Overflow! Overflow?
Carry into MSB #
Carry in = carry from less significant bits Carry Out MSB
21

Carry out = carry to more significant bits

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

O Oto+31

O =15 to +16

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

O Oto+31

[c oo]

O =15 to +16

23

Components of a Computer

Processor
Enable?

Read/Write

Address
Write
"NCEISLETS: Data

‘Arithmetic & Logic Unit Read
(ALU) Data

\ J
Y \ J

Processor-Memory Interface

|/O-Memory Interfaces
24

C Programming

Quiz: Pointers

void foo(int *x, int *y)
{ int ¢t;
if (*x > *y) { t = *y; *y = *x;
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, ¢);

a=3 b=2 c=1
a=1 b=2 c=3
Result is: b=3 c=2

i
= w W
Q
I

= W

U
li

Q
li

mooO®Z>
o o
li li
= w k= =W

Arrays and Pointers

int
foo (int arrayl|[],

unsigned int size)

What does this print? 8

- - /
printf (“*%d\n”, sizeof (array)) ; | .
) ... because array isreally

a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

int
main (void)
{
int a[10], b[5];

. foo(a, 10).. foo(b, 5) .. | What does this print? 40
printf (“%d\n”, sizeof(a)); — |

27

Quiz:
int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p;
(*pp) ++;
(*(*pp)) t++;
printf("%d\n", *p);

Result is:

A: 2

B: 3

C: 4

D:5

E: None of the above

C IVI emo ry Memory Address

(32 bits assumed here)

Management ~ FFFF FFFF
5 hex stack
* Program’s address space 0 _1_ 707
contains 4 regions:
— stack: local variables inside
functions, grows downward
— heap:space requested for T
dynamicdataviamalloe(); = p———l—— —
resizes dynamically, grows heap
upward
— static data: variables declared static data
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified. code

— code: loaded when program ~ 0000 0000,
starts, does not change

29

The Stack

Every time a function is called, a new frame

is allocated on the stack
fooA() { fooB(); }

Stack frame includes: fooB() { £fooC(); }
— Return address (who called me?) fooc() { fooD(); }
— Arguments
— Space for local variables fooA frame

Stack frames contiguous

blocks of memory; stack pointer fooB frame

indicates start of stack frame

When function ends, stack frame is tossed
off the stack; frees memory for future stack
frames

We’'ll cover details later for MIPS processor

fooC frame

fooD frame

Stack Pointer »

Question!

int x = 2;
int result;

int foo(int n)
{ int y;
if (n <= 0) { printf("End case!\n"); return 0; }
else
{ y=n+ foo(n-x);
return y;
}

}
result = foo(10);

Right after the print £ executes but before the return 0, how many copies of x and y are there
allocated in memory?

A:#x=1#y =1
B:#x=1#y=5
C:Hx=5,4y =1
D:#x=1,#y=6

E: #x=6,#y =6

31

Faulty Heap Management

 What is wrong with this code?
* Memory leak!

int foo() {
int *value = malloc(sizeof(int));
*value = 42;
return *value;

}

32

Using Memory You Don’t Own

* Whatis wrong with this code?

int* init array(int *ptr, int new size) {
ptr = realloc(ptr, new size*sizeof(int));
memset (ptr, 0, new size*sizeof(int));
return ptr;

}

int* fill fibonacci(int *fib, int size) ({
int 1i;
init array(fib, size);
/* £ib[0] = 0; */ fib[1l] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

33

Using Memory You Don’t Own

* Improper matched usage of mem handles

int* init array(int *ptr, int new size) {

}

ptr = realloc(ptr, new size*sizeof(int));
memset (ptr, O0,\new size*sizeof(int));
return ptr;

Remember: real10c may move entire block

int* fill fibonacci(int *fib, int size) ({

int 1i;

/* oops, forgot: fib = */ init array(fib, size);

/* £ib[0] = 0; */ fib[1l] = 1;

for (i=2; i<size; i++) What if array is moved to
fib[i] = fib[i-1] + fib[i-2]; new location?

return fib;

34

And In Conclusion, ...

Pointers are an abstraction of machine memory
addresses

Pointer variables are held in memory, and pointer
values are just numbers that can be manipulated
oy software

n C, close relationship between array names and
nointers

Pointers know the type of the object they point
to (except void *)
Pointers are powerful but potentially dangerous

And In Conclusion, ...

* C has three main memory segments in which
to allocate data:

— Static Data: Variables outside functions
— Stack: Variables local to function
— Heap: Objects explicitly malloc-ed/free-d.

 Heap data is biggest source of bugs in C code

MIPS

Addition and Subtraction of Integers

Example 1
* How to do the following C statement?
a=b+c+d-e; a=((b+c)+d)-e;

b—>Ssl; c>5s2;d > Ss3;e > Ss4;a > Ss0
* Break into multiple instructions

add $t0, Ssl, S$s2 # temp = b + c

add $t0, $t0, S$s3 # temp = temp + d

sub $s0, $t0, $s4 # a = temp - e

* A single line of C may break up into several lines of MIPS.

* Notice the use of temporary registers— don’t want to modify
the variable registers Ss

* Everything after the hash mark on each line is ignored

(comments)

38

Overflow handling in MIPS

* Some languages detect overflow (Ada),
some don’t (most C implementations)

 MIPS solution is 2 kinds of arithmetic instructions:

— These cause overflow to be detected
» add (add)
* add immediate (addi)
* subtract (sub)
— These do not cause overflow detection
* add unsigned (addu)
» add immediate unsigned (addiu)
* subtract unsigned (subu)

* Compiler selects appropriate arithmetic
— MIPS C compilers produce addu, addiu, subu

39

Question:

We want to translate = *y +1 into MIPS
(», y int pointers stored in: $s1)
A: addi ,Ss1,1
B: 1 1
sx $sl, O§$S ;
C: lw . §t0 0(851)
addi S$tO
SW t0,0()
D: SW _ . §t0 0(851)
addi S$StO
1w t0,0()
E: 1w

SW $51:O§§E8

Executing a Program

Memory
Processor
Read
Instruction
Control A Bits
Datapath \ 4
PC L— Tnstruction Bytes
Address
:Registers_—
Arithmetic & Logic Unit Data

The PC (program counter) is internal register inside processor holding byte
address of next instruction to be executed.

Instruction is fetched from memory, then control unit executes instruction

using datapath and memory system, and updates program counter (default is
add +4 bytes to PC, to move to next sequential instruction)

Start:

Exit:

Question!

addi S$s0,$zero,0
slt $t0,$s0,$sl
beq $t0,S$zero,Exit
sll $t1,$s0,2

addu S$t1,s$tl, $sb5

1w sStl,0(S$tl)

add $s4,S$s4,St1
addi $s0,S$s0,1

j Start

What is the code above?

A: while loop

do ... while loop
. forloop

: AorC
Not a loop

mo oW

42

MIPS Function Call Conventions

Registers faster than memory, so use them

Sa0—-S$a3: four argument registers to pass
parameters (54 - S7)

sSv0, $vl:two value registers to return
values (52,53)

Sra: one return address register to return to
the point of origin ($31)

43

Instruction Support for Functions (1/4)

... sum(a,b);... /* a,b:5s0,5s1 */

}
C int sum(int x, int y) {
return x+y;

}
address (shown in decimal)

1000 . .
M 1004 n MIPS, all instructions are 4
I 1008 oytes, and stored in memory
P igié just like data. So here we show
S the addresses of where the

2000 programs are stored.

2004

44

Instruction Support for Functions (2/4)

... sum(a,b);...

}
C int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000 add $SaO0,S$s0,Szero
M 1004 add Sal,Ssl,Szero
I 1008 addi $ra,$zero,1016
P
S

1012 5 sum
1016 ..

2000 sum: add S$vO0, S$a0,Sal

2004 jr Sra # new instr. “jump register”
45

C

N - =L

Instruction Support for Functions (3/4)

... sum(a,b);... /* a,b:$s0,$s1 */
}

int sum(int x, int y) {
return x+y;

}

e Question: Why use jxr here? Why notuse j7?

e Answer: sum might be called by many places, so we can’t
return to a fixed place. The calling proc to sum must be able

to say “return here” somehow.

2000 (sumy) add $v0,$a0,$al
2004 jr Sra # new instr. “jump register”

46

Instruction Support for Functions (4/4)

e Single instruction to jump and save return address:
jump and link (Jal)

* Before:
1008 addi Sra,Szero,1016 # Sra=1016
1012 j sum # goto sum
e After:

1008 jal sum # Sra=1012,goto sum

* Why havea jal?
— Make the common case fast: function calls very common.
— Don’t have to know where codeis in memory with jall

47

Question

e Which statementis FALSE?

A: MIPS uses jal to invoke a function and
jr to return from a function

B: jalsavesPC+1lin Sra

C: The callee can use temporary registers
(Sti) without saving and restoring them

D: The caller can rely on save registers (Ssi)
without fear of callee changing them

Stack Before, During, After Call

High address

$fp—

$Sp—

Low address

$fp—

$sp—~

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

b.

$fp—

$sp—~

49

Basic Structure of a Function

Prologue

entry label:

addi Ssp,Ssp, -framesize

sw $Sra, framesize-4(Ssp) # save Sra
save other regs if need be

ra

Body --- (call other functions...)

memory
Epilogue
restore other regs if need be
lw Sra, framesize-4(Ssp) # restore S$Sra

addi SSsp,Ssp, framesize
jr Sra

50

Instruction Formats

I-format: used for instructions with
immediates, 1w and sw (since offset counts as
an immediate), and branches (beq and bne)

— (but not the shift instructions; later)
J-format: used for j and jal
R-format: used for all other instructions

t will soon become clear why the instructions
nave been partitioned in this way

51

R-Format Instructions (1/5)

* Define “fields” of the following number of bits

each:6+5+5+5+5+6=32

| 6 5 5 5 5 6 |
* Forsimplicity, each field has a name:
&pcode rs rt rd |shamt| funct ‘

* Important: On these slides and in book, each field is
viewed as a 5- or 6-bit unsigned integer, not as part of a
32-bit integer

— Consequence: 5-bit fields can representany number 0-31, while
6-bit fields can representany number 0-63

52

-Format Instructions (2/4)

* Define “fields” of the following number of bits each:
6+5+5+16 =32 bits

B 5 5 16

— Again, each field has a name:

\ipcode rs rt immediate

— Key Concept: Only one field is inconsistent with R-format.
Most importantly, opcode is still in same location.

I-Format Example (2/2)

e MIPS Instruction:

addi

$21,$22,-50

Decimal/field representation:

| 8 22 21 -50 |
Binary/field representation:
| 001000/10110{10101| 1111111111001110 |

hexadecimal representation: 22D5 FFCE,,,

Branch Example (1/2)

Start countingfrom
e MIPS Code: instruction AFTER the

Loop: beq $9,%0, branch

addu $8,5%8,510
addiu $9,59,-1 §1

J
End:
* |-Format fields:
opcode =4 (look up on Green Sheet)
rs=9 (first operand)
rt=0 (second operand)

immediate=3

55

Branch Example (2/2)

e MIPS Code:

Loop: beq $9,50,
addu $8,5%8,510
addiu $9,59,-1

J

End:
31 Field representation (decimal): 0
[« [9 [0] 3 ‘
31 Field representation (binary): 0

|000100[01001]00000| 0000000000000011 |

56

J-Format Instructions (2/4)

3-1 Define two “fields” of these bit widths:

| 6 | 26

s As usual, each field has a name:

‘opcode‘ target address

* Key Concepts:

— Keep opcode field identical to R-Format and
I-Format for consistency

— Collapse all other fields to make room for large
target address

57

Summary

* |-Format: instructions with immediates,
1lw/sw (offsetis immediate), and beg/bne

— But not the shift instructions

— Branches use PC-relative addressing
I:[opcode| rs | rt | immediate |

* J-Format: j and jal (butnot jr)
— Jumps use absolute addressing
h‘opcode‘ target address ‘
* R-Format: all other instructions
R:‘opcode‘ rs ‘ rt ‘ rd ‘Shamt‘ funct ‘

Assembler Pseudo-Instructions

* Certain C statements are implemented
unintuitively in MIPS

— e.g. assighment (a=b) via add Szero

 MIPS has a set of “pseudo-instructions” to make
programming easier

— More intuitive to read, but get translated into actual
instructions later

 Example:
move dst, src

translated into
addi dst,src,O

59

Multiply and Divide

 Example pseudo-instruction:
mul $rd,Srs,Srt

— Consists of mult which stores the outputin special hiand
lo registers, and a move from these registers to Srd

mult Srs, Srt
mflo $rd

* mult and div have nothing important in the xd field
since the destination registers are hi and 1o

* mfhi andmflo have nothing important in the rs and
rt fields since the source is determined by the
instruction (see COD)

Question

Which of the following place the address of
LOOP in SvO?
1) la $tl1, LOOP

1 2

lw SvO0, 0(Stl) A)T, T
2) jal LOOP B)T, T,
LOOP: addu S$v0, Sra, S$zero C) F, T,
D)F, T,

3) la $v0, LOOP E)F, F,

H g 3 = 3 W

Steps in compiling a C program

Compiler converts a single HLL file S
into a single assembly language file. :

Compiler

Assembler removes pseudo-
instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A . s file becomes a . o file.

= Does 2 passes to resolve addresses, Object(machingnoE T

handling internal forward references |
7

Linker combines several . o files and Linker
resolves absolute addresses.)

e

Assembly program: foo.s

)

Assembler

"

= Enables separate compilation, libraries
i ’ E #:10) | hl ra.out
that need not be compiled, and xecutable (mac Iang pgm): a.ou

resolves remaining addresses 7

Loader loads executable into memory Loader
and begins execution. '

Memory

62

Pseudo-instruction Replacement

* Assembler treats convenientvariations of machine
language instructions as if real instructions

Pseudo: Real:

subu sp,Ssp,32 addiu sp,Ssp,-32

sd Sa0, 32(Ssp) sw $a0, 32(Ssp)
sw Sal, 36(Ssp)

mul St7,St6,S$t5 mult $t6,St5
mflo St7

addu $tO0,Sté6,1 addiu tO,St6,1

ble $t0,100,1lo0p slti Sat,$t0,101
bne Sat,$0,loop

la S$a0, str lui Sat,left(str)

ori $a0,Sat,right(str)

63

Question

At what point in process are all the machine
code bits generated for the following assembly
instructions:

1) addu S$6, $7, S8
2) Jjal fprintf
A: 1) & 2) After compilation
B: 1) After compilation, 2) Afterassembly
C: 1) After assembly, 2) Afterlinking
D: 1) After assembly, 2) After loading
E: 1) After compilation, 2) After linking

