
CS	110
Computer	Architecture	

Lecture	17:	
Performance	and	Floating	Point	Arithmetic	

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
2

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

How	do
we	know?

What	is	Performance?

• Latency	(or	response	time	or	execution	time)
– Time	to	complete	one	task

• Bandwidth	(or	throughput)
– Tasks	completed	per	unit	time

3

Cloud	Performance:
Why	Application	Latency	Matters

• Key	figure	of	merit:	application	responsiveness
– Longer	the	delay,	the	fewer	the	user	clicks,	the	less	the	
user	happiness,	and	the	lower	the	revenue	per	user

4

Defining	CPU	Performance
• What	does	it	mean	to	say	
X	is	faster	than	Y?

• Ferrari	vs.	School	Bus?
• 2013	Ferrari	599	GTB	
– 2	passengers,	quarter	mile	in	10	secs

• 2013	Type	D	school	bus
– 50	passengers,	quarter	mile	in	20	secs

• Response	Time (Latency):	e.g.,	time	to	travel	¼	mile
• Throughput (Bandwidth):	 e.g.,	passenger-mi		in	1	hour

5

Defining	Relative	CPU	Performance
• PerformanceX =	1/Program	Execution	TimeX
• PerformanceX >	PerformanceY =>
1/Execution	TimeX>	1/Execution	Timey	=>
Execution	TimeY >	Execution	TimeX

• Computer	X	is	N	times	faster	than	Computer	Y
PerformanceX /	PerformanceY =	N	or
Execution	TimeY /	Execution	TimeX=	N

• Bus	to	Ferrari	performance:
– Program:	Transfer	1000	passengers	for	1	mile
– Bus:	3,200	sec,	Ferrari:	40,000	sec

6

Measuring	CPU	Performance

• Computers	use	a	clock	to	determine	when	
events	takes	place	within	hardware

• Clock	cycles: discrete	time	intervals
– aka	clocks,	cycles,	clock	periods,	clock	ticks	

• Clock	rate	or	clock	frequency: clock	cycles	per	
second	(inverse	of	clock	cycle	time)

• 3	GigaHertz clock	rate	
=>	clock	cycle	time	=	1/(3x109)	seconds	

clock	cycle	time	=	333	picoseconds	(ps)

7

CPU	Performance	Factors

• To	distinguish	between	processor	time	and	I/O,	
CPU	time	is	time	spent	in	processor

• CPU Time/Program
= Clock Cycles/Program

x Clock Cycle Time

• Or	
CPU Time/Program
= Clock Cycles/Program ÷ Clock Rate

8

Iron	Law	of	Performance

• A program	executes	instructions
• CPU Time/Program

= Clock Cycles/Program x Clock Cycle Time
= Instructions/Program

x Average Clock Cycles/Instruction
x Clock Cycle Time

• 1st term	called	Instruction	Count
• 2nd term	abbreviated	CPI	for	average	
Clock	Cycles	Per	Instruction	

• 3rd	term	is	1	/	Clock	rate

9

Restating	Performance	Equation

• Time	=	 Seconds
Program

Instructions Clock	cycles Seconds
Program Instruction Clock	Cycle

10

××=

What	Affects	Each	Component?	
A)Instruction	Count,	B)CPI,	C)Clock	Rate

Affects	What?

Algorithm

Programming	
Language
Compiler

Instruction	Set Architecture

11

What	Affects	Each	Component?	
Instruction	Count,	CPI,	Clock	Rate

Affects	What?
Algorithm Instruction	Count,

CPI
Programming	
Language

Instruction	Count,
CPI

Compiler Instruction	Count,
CPI

Instruction	Set
Architecture

Instruction	Count,
Clock	Rate,	CPI

12

Clickers

• Which	computer	has	the	highest	performance	
for	a	given	program?

13

Computer Clock
frequency

Clock cycles	
per	
instruction

#instructions	
per	program

A 1GHz 2 1000

B 2GHz 5 800

C 500MHz 1.25 400

D 5GHz 10 2000

Clickers

• Which	computer	has	the	highest	performance	
for	a	given	program?

14

Computer Clock
frequency

Clock cycles	
per	
instruction

#instructions	
per	program

Calculation

A 1GHz 2 1000 1ns	*	2	*	1000	=	2µs

B 2GHz 5 800 0.5ns		5	*800	=	2µs

C 500MHz 1.25 400 2ns		1.25	*	400	=	1µs

D 5GHz 10 2000 0.2ns	*	10	*	2000	=	4µs

Workload	and	Benchmark

• Workload: Set	of	programs	run	on	a	computer	
– Actual	collection	of	applications	run	or	made	from	
real	programs	to	approximate	such	a	mix	

– Specifies	programs,	inputs,	and	relative	frequencies
• Benchmark:	Program	selected	for	use	in	
comparing	computer	performance
– Benchmarks	form	a	workload
– Usually	standardized	so	that	many	use	them

15

SPEC	
(System	Performance	Evaluation	Cooperative)
• Computer	Vendor	cooperative	for	
benchmarks,	started	in	1989

• SPECCPU2006
– 12	Integer	Programs
– 17	Floating-Point	Programs

• Often	turn	into	number	where	bigger	is	faster
• SPECratio:	reference	execution	time	on	old	
reference	computer	divide	by	execution	time	
on	new	computer	to	get	an	effective	speed-up

16

SPECINT2006	on	AMD	Barcelona
Description

Instruc-
tion

Count (B)
CPI

Clock
cycle

time (ps)

Execu-
tion

Time (s)

Refer-
ence

Time (s)

SPEC-
ratio

Interpreted string
processing 2,118 0.75 400 637 9,770 15.3
Block-sorting compression 2,389 0.85 400 817 9,650 11.8
GNU C compiler 1,050 1.72 400 724 8,050 11.1
Combinatorial
optimization 336 10.0 400 1,345 9,120 6.8
Go game 1,658 1.09 400 721 10,490 14.6
Search gene sequence 2,783 0.80 400 890 9,330 10.5
Chess game 2,176 0.96 400 837 12,100 14.5
Quantum computer
simulation 1,623 1.61 400 1,047 20,720 19.8
Video compression 3,102 0.80 400 993 22,130 22.3
Discrete event simulation
library 587 2.94 400 690 6,250 9.1
Games/path finding 1,082 1.79 400 773 7,020 9.1
XML parsing 1,058 2.70 400 1,143 6,900 6.017

18

Summarizing	Performance	…

Clickers:	Which	system	is	faster?

System Rate	(Task	1) Rate	(Task	2)

A 10 20

B 20 10

A:	System	A
B:	System	B
C:	Same	performance
D:	Unanswerable	question!

19

… Depends	Who’s	Selling
System Rate	(Task	1) Rate	(Task	2)

A 10 20

B 20 10

Average

15

15
Average	throughput

System Rate	(Task	1) Rate	(Task	2)

A 0.50 2.00

B 1.00 1.00

Average

1.25

1.00
Throughput	relative	to	B

System Rate	(Task	1) Rate	(Task	2)

A 1.00 1.00

B 2.00 0.50

Average

1.00

1.25
Throughput	relative	to	A

Summarizing	SPEC	Performance

• Varies	from	6x	to	22x	faster	than	reference	
computer

• Geometric	mean	of	ratios:	
N-th root	of	product	
of	N	ratios
– Geometric	Mean	gives	same	relative	answer	no	
matter	what	computer	is	used	as	reference

• Geometric	Mean	for	Barcelona	is	11.7

20

Administrivia

• Proj 2.1	will	be	posted	tomorrow

• Next	weeks	lab:
– Lab	8	will	be	posted	tomorrow
– In	parallel:	Project	checkup!

• HW	6	will	come	soon,	too…

21

Review	of	Numbers

• Computers	are	made	to	deal	with	numbers
• What	can	we	represent	in	N	bits?
– 2N things,	and	no	more!	They	could	be…
– Unsigned	integers:

0 to 2N	- 1
(for	N=32,		2N–1 =	4,294,967,295)
– Signed	Integers	(Two’s	Complement)

-2(N-1) to 2(N-1)		- 1
(for	N=32,		2(N-1)	 =	2,147,483,648)

What	about	other	numbers?
1. Very	large	numbers?	 (seconds/millennium)

=> 31,556,926,00010 (3.155692610 x	1010)
2. Very	small	numbers?	(Bohr	radius)

=> 0.000000000052917710m	 (5.2917710 x	10-11)	
3. Numbers	with	both integer	&	fractional	parts?

=> 1.5	
First	consider	#3.		
…our	solution	will	also	help	with	#1	and	#2.

Representation	of	Fractions
“Binary Point” like decimal point signifies
boundary between integer and fractional parts:

xx.yyyy
21

20 2-1 2-2 2-3 2-4

Example 6-bit
representation:

10.1010two = 1x21 + 1x2-1 + 1x2-3 = 2.625ten

If we assume “fixed binary point”, range of 6-bit
representations with this format:

0 to 3.9375 (almost 4)

Fractional	Powers	of	2

0 1.0 1
1 0.5 1/2
2 0.25 1/4
3 0.125 1/8
4 0.0625 1/16
5 0.03125 1/32
6 0.015625
7 0.0078125
8 0.00390625
9 0.001953125
10 0.0009765625
11 0.00048828125
12 0.000244140625
13 0.0001220703125
14 0.00006103515625
15 0.000030517578125

i 2-i

Representation	of	Fractions	with	Fixed	Pt.
What about addition and multiplication?

Addition is
straightforward:

01.100 1.5ten
+ 00.100 0.5ten
10.000 2.0ten

Multiplication a bit more complex:

01.100 1.5ten
00.100 0.5ten
00 000
000 00

0110 0
00000

00000
0000110000

Where’s the answer, 0.11? (need to remember where point is)

Representation	of	Fractions
So far, in our examples we used a “fixed” binary point.
What we really want is to “float” the binary point. Why?

Floating binary point most effective use of our limited bits
(and thus more accuracy in our number representation):

… 000000.001010100000…

Any other solution would lose accuracy!

example: put 0.1640625ten into binary. Represent
with 5-bits choosing where to put the binary point.

Store these bits and keep track of the binary
point 2 places to the left of the MSB

With floating-point rep., each numeral carries an exponent
field recording the whereabouts of its binary point.

The binary point can be outside the stored bits, so very
large and small numbers can be represented.

Scientific	Notation	(in	Decimal)

• Normalized	form:	no	leadings	0s	
(exactly	one	digit	to	left	of	decimal	point)

• Alternatives	to	representing	1/1,000,000,000

– Normalized:	 1.0	x	10-9

– Not	normalized:	 0.1	x	10-8,10.0	x	10-10

6.02ten x 1023

radix (base)decimal point

mantissa exponent

Scientific	Notation	(in	Binary)

• Computer	arithmetic	that	supports	it	called	
floating	point,	because	it	represents	numbers	
where	the	binary	point	is	not	fixed,	as	it	is	for	
integers
– Declare	such	variable	in	C	as	float

• double for	double	precision.

1.01two x 2-1

radix (base)“binary point”

exponentmantissa

Floating-Point	Representation	(1/2)
• Normal	format:	+1.xxx…xtwo*2yyy…ytwo
• Multiple	of	Word	Size	(32	bits)

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
•S represents Sign

Exponent represents y’s
Significand represents x’s

•Represent numbers as small as
2.0ten x 10-38 to as large as 2.0ten x 1038

Floating-Point	Representation	(2/2)
• What	if	result	too	large?	

(>	2.0x1038 ,	<	-2.0x1038)
– Overflow!	=> Exponent	larger	than	represented	in	8-bit	
Exponent	field

• What	if	result	too	small?	
(>0	&	<	2.0x10-38 ,	<0	&	>	-2.0x10-38)
– Underflow!=> Negative	exponent	larger	than	represented	
in	8-bit	Exponent	field

• What	would	help	reduce	chances	of	overflow	and/or	
underflow?

0 2x10-38 2x10381-1 -2x10-38-2x1038

underflow overflowoverflow

IEEE	754	Floating-Point	Standard	(1/3)

Single	Precision	(Double	Precision	similar):

• Sign bit: 1	means	negative 0	means	positive

• Significand in	sign-magnitude	 format	(not	2’s	complement)
– To	pack	more	bits,	leading	1	implicit	for	normalized	numbers
– 1	+	23	bits	single,	1	+	52	bits	double
– always	true:	0	<	Significand	<	1																													(for	normalized	numbers)

• Note:	0	has	no	leading	1,	so	reserve	exponent	value	0	just	for	
number	0

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

IEEE	754	Floating	Point	Standard	(2/3)

• IEEE	754	uses	“biased	exponent”
representation
– Designers	wanted	FP	numbers	to	be	used	even	if	no	
FP	hardware;	e.g.,	sort	records	with	FP	numbers	
using	integer	compares

–Wanted	bigger	(integer)	exponent	field	to	represent	
bigger	numbers

– 2’s	complement	poses	a	problem	(because	negative	
numbers	look	bigger)
• Use	just	magnitude	and	offset	by	half	the	range

IEEE	754	Floating	Point	Standard	(3/3)

• Summary	(single	precision):

•Called Biased Notation, where bias is
number subtracted to get final number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual
value for exponent

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Question
• Guess	this	Floating	Point	number:
1	1000	0000		1000	0000	0000	0000	0000	000

A:	-1x	2128

B:	+1x	2-128

C:	-1x	21

D:	+1.5x	2-1

E:	-1.5x	21

35

Representation	for	± ∞

• In	FP,	divide	by	0	should	produce	± ∞,	not	
overflow.
•Why?
– OK	to	do	further	computations	with	∞	
E.g.,		X/0		>		Y	may	be	a	valid	comparison

• IEEE	754	represents	± ∞
– Most	positive	exponent	reserved	for	∞
– Significands	all	zeroes

Representation	for	0

• Represent	0?
– exponent	all	zeroes
– significand	all	zeroes
–What	about	sign?		Both	cases	valid
+0: 0 00000000 00000000000000000000000
-0: 1 00000000 00000000000000000000000

Special Numbers

•What have we defined so far?
(Single Precision)

Exponent Significand Object
0 0 0
0 nonzero ???
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero ???

•Clever idea:
• Use exp=0,255 & Sig!=0

Representation	for	Not	a	Number

• What	do	I	get	if	I	calculate
sqrt(-4.0)or	0/0?

– If	∞	not	an	error,	these	shouldn’t	be	either
– Called	Not	a Number	(NaN)
– Exponent	=	255,	Significand	nonzero

• Why	is	this	useful?
– Hope	NaNs help	with	debugging?
– They	contaminate:	op(NaN,	X)	=	NaN
– Can	use	the	significand	to	identify	which!

Representation	for	Denorms	(1/2)

• Problem:	There’s	a	gap	among	representable	FP	
numbers	around	0
– Smallest	representable	pos num:

• a	=	1.0…	2	*	2-126	=	2-126
– Second	smallest	representable	pos num:

• b =	1.000……1	2	*	2-126	
=	(1	+	0.00…12)	*	2-126	
=	(1	+	2-23)	*	2-126	
=	2-126	+	2-149

– a	- 0	=	2-126
– b	- a	=	2-149 b

a0 +-
Gaps!

Normalization
and implicit 1
is to blame!

Representation	for	Denorms (2/2)
•Solution:

• We still haven’t used Exponent = 0,
Significand nonzero

• DEnormalized number: no (implied)
leading 1, implicit exponent = -126.

• Smallest representable pos num:
a = 2-149

• Second smallest representable pos num:
b = 2-148

0 +-

Special	Numbers	Summary

•Reserve exponents, significands:
Exponent Significand Object
0 0 0
0 nonzero Denorm
1-254 anything +/- fl. pt. #
255 0 +/- ∞
255 nonzero NaN

Conclusion
• Floating Point lets us:

• Represent numbers containing both integer and fractional
parts; makes efficient use of available bits.

• Store approximate values for very large and very small #s.

• IEEE 754 Floating-Point Standard is most widely
accepted attempt to standardize interpretation of such
numbers (Every desktop or server computer sold
since ~1997 follows these conventions)
•Summary (single precision):

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Exponent tells Significand how much
(2i) to count by (…, 1/4, 1/2, 1, 2, …)

Can
store
NaN,
± ∞

www.h-schmidt.net/FloatApplet/IEEE754.html

And	In	Conclusion,	…

44

• Time	(seconds/program)	is	measure	of	performance	
Instructions Clock	cycles Seconds
Program Instruction Clock	Cycle

• Floating-point	representations	hold	approximations	
of	real	numbers		in	a	finite	number	of	bits

××=

