CS 110
Computer Architecture
Lecture 18:
Amdahl’s Law, Data-level Parallelism

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

New-School Machine Structures
(It’s a bit more compllcated')

Software Hardware
* Parallel Requests

Assigned to computer

Warehouse &
Scale &

e.g., Search “Katz” Computer §
Harness
* Parallel Threads , iiclism &
Assigned to core Achieve High
e.g., Lookup, Ads Performance

e Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions
All gates @ one time
* Programminglanguages

Cache Memory .-~ i
> I
I

/ :::?/ Logic Gates

Using Parallelism for Performance

* Two basic ways:
— Multiprogramming
* run multipleindependent programs in parallel
* “Easy”

— Parallel computing

* run one program faster
e “Hard”

 We’ll focus on parallel computing for next few
lectures

Single-Instruction/Single-Data Stream

SISD

(SISD)

Instruction Pool

* Sequential computer
that exploits no

» | PU |+

Data Pool

Processing Unit

parallelism in either the
instruction or data
streams. Examples of
SISD architecture are
traditional uniprocessor
machines

Single-Instruction/Multiple-Data Stream
(SIMD or “sim-dee”)

* SIMD computer exploits

SIMD Instruction Pool muItipIe data streams
against a single
*(FY) instruction stream to
e [pul— operations that may be
= naturally parallelized,
§ »[PU|« e.g., Intel SIMD
Instruction extensions
*|PU|[+ or NVIDIA Graphics

Processing Unit (GPU)

Multiple-Instruction/Multiple-Data Streams
(MIMD or “mim-dee”)

Instruction Pool * Multiple autonomous
pProcessors

l simultaneously

executing different

B instructions on different

v data.

> PU — MIMD architectures

v include multicore and
Warehouse-Scale
Computers

—>{ PU

Data Pool

Multiple-Instruction/Single-Data Stream
(MISD)

 Multiple-Instruction,
Single-Data stream
computer that exploits
multiple instruction
streams against a single
Lipul< Ls|pyl— data stream.

— Rare, mainly of historical
interest only

MISD Instruction Pool

Data Pool

Flynn™* Taxonomy, 1966

Multiple

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Instruction
Streams Multiple MISD: No examples today

MIMD: Intel Xeon 5345 (Clovertown)

* In 2013, SIMD and MIMD most common parallelismin
architectures — usually both in same system!

* Mostcommon parallel processing programmingstyle: Single
Program Multiple Data (“SPMD”)

— Single programthatrunson all processors ofa MIMD
— Cross-processor execution coordination using synchronization
primitives
 SIMD (aka hw-leveldata parallelism): specialized function
units, for handlinglock-step calculationsinvolvingarrays

— Scientific computing, signal processing, multimedia

audio/video processin
(/ P g) *Prof. Michael

Flynn, Stanford

Big Idea: Amdahl’s (Heartbreaking) Law

* Speedup due to enhancement E is

Exec time w/o E
Speedupw/ E= —-—mmmememm -
Exec time w/ E
* Suppose that enhancement E accelerates a fraction F (F <1)
of the task by a factor S (S>1) and the remainder of the task is

unaffected

] — [

-

Execution Timew/ E = Execution Time w/o E x [(1-F) + F/S]

Speedupw/E = 1/[(1-F)+F/S]

Big Idea: Amdahl’s Law

Speedup = 1
(1-F) + F

Non-speed-up part — S Speed-up part

Example: the execution time of half of the program can
be accelerated by a factor of 2.
What is the program speed-up overall?

10

Example #1: Amdahl’s Law
Speedupw/E= 1/[(1-F) + F/S]

Consider an enhancement which runs 20 times faster but
which is only usable 25% of the time

Speedup w/E = 1/(.75+.25/20) = 1.31

What if its usable only 15% of the time?
Speedup w/ E = 1/(.85+.15/20) = 1.17

Amdahl’s Law tells us that to achieve linear speedup with
100 processors, none of the original computation can be
scalar!

To get a speedup of 90 from 100 processors, the
percentage of the original program that could be scalar
would have to be 0.1% or less

Speedup w/E = 1/(.001 +.999/100) = 90.99

Speedup

Amdahl’'s Law

20.00

T T T T T —
If the portion of ///
18.001 the program that v e
: arallel Portion
16.00L f:an be parallelized // 50%
is small, then the / — 759
14,004 speedupis limited 90%

/ — o5
12.00 /
//
8.00 / // The non-parallel
/ portion limits

6.00 // the performance
4.00 V/

//
2.00 = _
0.00 ,

— ™ <t (0] (o) ™ <r (00]
— m (o] ﬁ

256
512
1024
2048
4096
8192
1638

Number of Processors

32768
65536

Strong and Weak Scaling

* To get good speedup on a parallel processor while
keeping the problem size fixed is harder than getting
good speedup by increasing the size of the problem.

— Strong scaling: when speedup can be achieved on a

parallel processor without increasing the size of the
problem

— Weak scaling: when speedup is achieved on a parallel
processor by increasing the size of the problem
proportionally to the increase in the number of processors

* Load balancing is another important factor: every
processor doing same amount of work

— Just one unit with twice the load of others cuts speedup
almost in half

Question

Suppose a program spends 80% of its time in a square root
routine. How much must you speedup square root to make
the program run 5 times faster?

Speedupw/E= 1/[(1-F)+F/S]

A:5

B: 16

C: 20

D: 100

E: None of the above

SIMD Architectures

» Data parallelism: executing same operation
on multiple data streams
 Example to provide context:
— Multiplying a coefficient vector by a data vector
(e.qg., in filtering)
yv[i] := c[i]x x[1], O = 1 < n

« Sources of performance improvement:

— One instruction is fetched & decoded for entire
operation

— Multiplications are known to be independent
— Pipelining/concurrency in memory access as well

Intel “Advanced Digital Media Boost”

 Toimprove performance, Intel’s SIMD instructions

— Fetch one instruction, do the work of multipleinstructions

Source 1

Source 2

Destination

X3 X2 X1 X0
Y3 Y2 Y1 YO
X3 OPY3 X2 0P Y2 X1 OP Y1 X0 OP YO

16

First SIMD Extensions:
MIT Lincoln Labs TX-2, 1957

QNE 36 BITAE D
(3e)

OPERAND WORD
STRUCTURE

TWO I8 BIT AE'S D
(18,18)

c
A

[sl

po - - - - - -

c
A
B

OPERAND WORD
.STRUCTURE

ONE278BITS& D | .
ONE9BITAE C !
|

'

i

'

1

'

!
dad

[

1

'

I

1

1

1
-

(27,9) Al . H L
B ' '

OPERAND WORD
STRUCTURE

FOUR 9 BIT AE'S D i

(9,9,99) Cl . .. "

Al L
B

OPERAND WORD
STRUCTURE

b - - - -

17

Admin

* Project Checkup:
— 2 groups from lab 1 missing: today after lecture!
— Lab 2 and 3: everybody needs to attend

* Project 2.x:
— Use git to share your work and collaborate

— New rule enforced:

* Every group member needs to have at least 2 commits
and at least 25% of the # commits from his own PC.

* Penalty for violation:10% off project score for violator!
* Will be posted also on piazza

Intel SIMD Extensions

e MMX 64-bit registers, reusing floating-point
registers [1992]

» SSE2/3/4, new 128-bit registers [1999]

* AVX, new 256-bit registers [2011]
— Space for expansion to 1024-bit registers

19

XMM Registers

127 0

XMM7

XMM6

XMMS

XMM4

XMM3

XMM2

XMM1

XMMO

* Architecture extended with eight 128-bit data registers:
XMM registers

— x86 64-bit address architecture adds 8 additional registers
(XMM8 — XMM15)

Intel Architecture SSE2+
128-Bit SIMD Data Types

* Note: in Intel Architecture (unlike MIPS) a word is 16 bits

— Single-precision FP: Double word (32 bits)
— Double-precision FP: Quad word (64 bits)

Fundamental 128-Bit Packed SIMD Data Types

| | | [] | | | | Packed Bytes

127 122121 9695 8079 6463 4847 3231 1615 o 16/ 128bits

I I | I I I Packed Words

127 122121 9695 8079 6463 4847 3231 1615 o 8/128bits

I | I Packed Doublewords
127 96 95 64 63 3231 0 4/128 bits

| Packed Quadwords

127 64 63 0 2 / 128 bits

SSE/SSE2 Floating Point Instructions
| Datatransfer | Arithmetic | Compare

Move woy(a/U}(SS/PS/SD/ | ADD{SS/PS/SD/PD} xmm, CMP{SS/PS/SD/
does | PD} xmm, mem/xmm mem/ Xxmm PD]
both SUB{SS/PS/SD/PD} xmm,
load mem/ xmm

MOV {H/L} {PS/PD} MUL{SS/PS/SD/PD} xmm,
and | xqm, mem/xmm mem/ xmm
store DIV{SS/PS/SD/PD} xmm,
mem/ xmm
SQRT{SS/PS/SD/PD} mem/xmm
MAX {SS/PS/SD/PD} mem/xmm
MIN{SS/PS/SD/PD} mem/xmm

xmm: one operand is a 128-bit SSE2 register

mem/xmm: other operand is in memory or an SSE2 register

{SS} Scalar Single precision FP: one 32-bit operand in a 128-bitregister

{PS} Packed Single precision FP:four 32-bitoperands in a 128-bitregister
{SD} Scalar Double precision FP: one 64-bit operand in a 128-bitregister
{PD} Packed Double precision FP, or two 64-bit operands in a 128-bit register
{A} 128-bitoperand is alighed in memory

{U} means the 128-bit operand is unaligned in memory

{H} means move the high half of the 128-bit operand

{L} means move the low half of the 128-bit operand

Packed and Scalar Double-Precision
Floating-Point Operations

X1 X0

Y1 YO

Packed

X1 OP Y1 X0 OP YO

X1 X0

Y1 YO

Scalar
Y

X1 X0 OP YO

Example: SIMD Array Processing

for each f in array

f = sqgrt(f)

for each £ in array

{

load £ to the floating-point register
calculate the square root
write the result from the register to memory

each 4 members in array)

load 4 members to the SSE register
calculate 4 square roots in one operation
store the 4 results from the register to memory

SIMD style

24

Data-Level Parallelism and SIMD

SIMD wants adjacent values in memory that
can be operated in parallel

Usually specified in programs as loops
for(1=1000; i>0; i=i-1)
x[1] = x[1] + s;
How can reveal more data-level parallelism
than available in a single iteration of a loop?
Unroll loop and adjust iteration rate

25

Looping in MIPS

Assumptions:

- Stlisinitiallythe address of the elementin the array with the highest
address

- SfO containsthe scalarvalues
- 8(St2) is the address of the last element to operate on

CODE:

Loop: 1.1.d Sf2,0(St1) ; Sf2=array element
2.add.d Sf10,5f2,5f0 :add s to Sf2
3.s.d Sf10,0(St1) : storeresult
4.addiu St1,5t1,#-8 ; decrement pointer 8 byte

5. bne St1,5t2,Loop ; repeatloopif St1 1= St2

26

Loop:

l.d
add.d

ld
add.d
s.d

ld
add.d
s.d

l.d
add.d
s.d
addiu
bne

$f2,0(St1)
$f10,5f2,5f0
$f10,0(5t1)
$f4,-8(St1)
$f12,5f4,5f0
$f12,-8($t1)
$6,-16(5t1)
$f14,5f6,5f0
$f14,-16(5t1)
Sf8,-24(St1)
$f16,5f8,5f0
$f16,-24(5t1)
St1,5t1,#-32
St1,5t2,Loop

Loop Unrolled

NOTE:
1. Only 1 Loop Overhead every 4 iterations
2. This unrolling works if
loop_limit(mod 4) =0
3. Using different registers for eachiteration
eliminates data hazards in pipeline

27

Loop:l.d
l.d
l.d
l.d
add.d
add.d
add.d
add.d
s.d
s.d
s.d
s.d
addiu
bne

Loop Unrolled Scheduled

$f2,0(St1)

$f4,-8(St1) \

$f6,-16(St1) 4 Loads side-by-side: Could replace with 4-wide SIMD
$18,-24($t1) o~ O2°

$f10,52,5f0

$f12,5f4,5f0
$f14,5f6,$f0 4 Adds side-by-side: Could replace with 4-wide SIMD Add

$£16,58,5f0_~"

$f10,0(St1)

$f12,-8(St1) \ o o .
$f14,-16(St1) 4 Stores side-by-side: Could replace with 4-wide SIMD Store

$f16,-24(St1
St1,5t1,#-32
St1,5t2,Loop

28

Loop Unrolling in C

* |nstead of compiler doing loop unrolling, could do it
yourself in C

for (1i=1000; i>0; i=i-1)
x[1i] = x[1] + s;
e Could be rewritten What is downside of doingitin C?
for (1=1000; i>0; i=i-4) {
x[1] = x[1] + s;
x[1i-1] = x[1-1] + s;
x[1-2] x[1i-2] + s;
x[1-3] x[1i-3] + s;

}

Generalizing Loop Unrolling

* Aloop of n iterations
* k copies of the body of the loop
e Assuming (n mod k) #0

Then we will run the loop with 1 copy of the

body (n mod k) times and with k copies of the
body floor(n/k) times

30

Example: Add Two Single-Precision
Floating-Point Vectors

Computationto be performed:

mov a ps: move from mem to XMM register,
mem ory aligned, packed single precision

vec res.x = vl.x + v2.x;

vec_res.y = vl.y + v2.y; add ps: add from mem to XMM register,
vec_res.z = vl.z + v2.z; packed single precision

vec _res.w= vl.w + v2.w;

mov a ps : move from XMM register to mem,
memory aligned, packed single precision

SSE Instruction Sequence;

(Note: Destination on thg fightt in x86 assembly)

movaps address-of-vl, $xmpo0
// vi.w | vi.z |
addps address-of-v2, %$xmmO
// vi.w+v2.w | vl
movaps %xmm0, address-of-vec res

| vli.x => xmm0

+v2.z | vli.y+v2.y | vl.x+v2.x => xmm0

31

Intel SSE Intrinsics

* Intrinsics are C functions and procedures for
inserting assembly language into C code, including
SSE instructions

— With intrinsics, can program using these instructions
indirectly

— One-to-one correspondence between SSE instructions and
intrinsics

Example SSE Intrinsics

Intrinsics: Corresponding SSE instructions:
* \ector data type:
~m128d
* Load and store operations:
_mm_load_pd MOVAPD/aligned, packed double
_mm_store_pd MOVAPD/aligned, packed double
_mm_loadu_pd MOVUPD/unaligned, packed double
_mm_storeu_pd MOVUPD/unaligned, packed double
* Load and broadcastacross vector
_mm_load1l pd MOVSD + shuffling/duplicating
* Arithmetic:
_mm_add_pd ADDPD/add, packed double

~mm_mul_pd MULPD/multiple, packed double

33

Example: 2 x 2 Matrix Multiply

Definition of Matrix Multiply:

pi
C,; = (AxB);= D A xB,
k=1

A1 A1 Bi1 Bi, C119A11B1 1+ A12By 1 C12=A11B12+A1 5B,

X =
A4 A, B,1 B, Cy1FA21B1 1|+ Ay 2By 1 C,2=Ay1B1,+A; 5B, 5
1 0 1 3 Ci=1%1 +0%2=1 Cip= 1%3 + 0*4 =3

X =
0 1 2 A Cpp=0%1 + 1%2 =2 Cprp=0%3 + 1%4= 4

34

Example: 2 x 2 Matrix Multiply

* Using the XMM registers

— 64-bit/double precision/two doubles per XMM reg

Cy
C,

Cys i Ca1
C1,2 - Coo
Al,i i A2,i
Bi 1 ! Bi1
B, ! Bi,

Stored in memory in Column order

O)

Ci1 Cipo
Ca1 Cano

-/

c, G,

35

Example: 2 x 2 Matrix Multiply

e |nitialization

C, 0 i 0
C, 0 i 0

e |nitialization

Example: 2 x 2 Matrix Multiply

Al,l

A2,1

Bis By, C13A1L1Baft A12By s

0 ! 0
0 ! 0
Al,l i A2,1
B1,1 i Bl,l
B, | By

B,1 B, Cy17A21B1 4|t A58y 1

Cy,=A11B1,+A 5By,

Cy2=A,1B1 1A, 5B,

_mm_load_pd: Load 2 doubles into XMM
reg, Stored in memory in Column order

_mm_loadl_pd: SSE instruction that loads
a double word and stores it in the high and

low double words of the XMM register
(duplicates value in both halves of XMM)

37

A A,
A2,1 A2,2
* First iteration intermec
0+A; 1B 4 i 0+A;1B11
0+A; 1B, , i 0+A;1B1>
A11 i A; 1
Bi1 i Bi1
By, ! By,

Example: 2 x 2 Matrix Multiply

late resu

Bl,l Bl,2 C1,1=

Bz,l Bz,z Cz,f

A1,1B1,1

A2,181,1

+A;,8,,

+A,,B,1

t

Cy,=A11B1,+A 5By,

Cy2=A,1B1 1A, 5B,

cl=_mm_add_pd(cl, mm_mul_pd(a,bl));
c2=_mm_add_pd(c2, mm_mul_pd(a,b2));

SSE instructions first do parallel multiplies

and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in

Column order

_mm_loadl_pd: SSE instruction that loads
a double word and stores it in the high and

low double words of the XMM register
(duplicates value in both halves of XMM)

38

* First iteration int_erme—di

Example: 2 x 2 Matrix Multiply

A1,1 A1,2

A2,1 A2,2

O+A1'1B]_,1 i O+A2,1Bl,1
O+A1,1B1,2 i 0+A2,1Bl,2
A, L Ay
B,,1 ! By
B, i B,

X

Bl,l Bl,2 C1,1=

Al,lBl,l

AZ,lBl,l

ate result

a BZIZ Cz,l:

Cio=A11B1o+A ;B

C2=A,1B1,+A; 5B,

cl=_mm_add_pd(cl, mm_mul_pd(a,bl));
c2=_mm_add_pd(c2, mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in

Column order

_mm_loadl_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

39

Example: 2 x 2 Matrix Multiply

e Second iteration intermediate result

C1,1

Coa

1
A11B11+tA17B21 | Ay 1B11+A;5Bo

]
A1,1B1,+tA1,B2, 1 Ay 1B1o+A; 5855

Cio Cyo
A1 I A,
B, i B,
B, ! B,

cl=_mm_add_pd(cl, mm_mul_pd(a,bl));
c2=_mm_add_pd(c2, mm_mul_pd(a,b2));
SSE instructions first do parallel multiplies
and then parallel adds in XMM registers

_mm_load_pd: Stored in memory in
Column order

_mm_loadl_pd: SSE instruction that loads
a double word and stores it in the high and
low double words of the XMM register
(duplicates value in both halves of XMM)

40

Example: 2 x 2 Matrix Multiply
(Part 1 of 2)

#include <stdio.h>
// header file for SSE compiler intrinsics
#include <emmintrin.h>

// NOTE: vector registers will be represented in
// commentsasvl =[a [b]

// where vl is a variable of type __m128d and
// a, b are doubles

int main(void) {
// allocate A,B,C aligned on 16-byte boundaries
double A[4] _ attribute__ ((aligned (16)));
double B[4] __ attribute__ ((aligned (16)));
double C[4] __ attribute__ ((aligned (16)));
int |da = 2;
inti=0;
// declare several 128-bit vector variables
. m128d cl,c2,a,bl,b2;

// Initialize A, B, C for example
J¥A= (note column order!)
10
01
*/
A[0] = 1.0; A[1] =0.0; A[2] =0.0; A[3] =1.0;

/¥B= (note column order!)
13

24
¥/
B[0]=1.0; B[1]=2.0; B[2]=3.0; B[3] =4.0;

/¥ C= (note column order!)
00

00
*/
C[0] =0.0; C[1] =0.0; C[2] =0.0; C[3] =0.0;

41

Example: 2 x 2 Matrix Multiply
(Part 2 of 2)

// used aligned loads to set /¥cl=
//cl=[c_ 11 c_21] i=0:[c 11+q 11*b 11 [c 21+ a 21*b _11]
cl=_mm_load_pd(C+0*Ida); i=1:[c 11+a 21*b 21 |c 21+ a 22*b 21]

//c2=[c 12 c 22]

*/
c2=_mm_load_pd(C+1*Ida); cl=_mm_add_pd(cl,_ mm_mul_pd(a,bl));
for (i=0; i< 2;i++) { /*e2=
Jx = i=0:[c_ 12+q 11*b 12 |c 22+ a_21*b_12]
i=0:[g 11 [a 21] i=1:[c 12+q 21*b 22 | c 22+ a_22*b 22]
i=1:[a 12 [a 22] */
*/ c2=_mm_add_pd(c2,_ mm_mul_pd(a,b2));
a=_mm_load_pd(A+i*Ida); }
/* bl =

i=0:[b 11 [b_11]

// store c1,c2 back into C for completion
i=1:[b 21 [b 21]

_mm_store_pd(C+0*Ida,c1);

*
/ . .
bl =_mm_loadl_pd(B+i+0*Ida); —mm_store_pd(C+1%lda,c2);
/* b2 = .
i=0:[b 12 | b 12] // print C
i=1:[b 22 | b 22] printf("%g,%g\n%g,%g\n",C[0],C[2],C[1],C[3]);
*/ return 0;
b2 = _mm_loadl_pd(B+i+1*Ida); }

42

Inner loop from gcc -0 -S

L2: movapd
movddup
mulpd
addpd
movddup
mulpd
addpd
addq
addq
cmpq
jne
movapd
movapd

(%rax,%rsi), %xmm1 //Load aligned A[i,i+1]->m1

(%rdx), %xmmO
%xmm1l, %xmmoO
%xmm0O, %xmm3
16(%rdx), %xmm0O
%XxmmO0, %xmm1
%xmm1l, %xmm?2
S16, %rax

S8, %rdx

S32, %rax

L2

%xmma3, (%rcx)
%xmm?2, (%rdi)

//Load BJj], duplicate->m0
//Multiply m0*m1->m0

//Add mO+m3->m3

//Load B[j+1], duplicate->m0O
//Multiply mO*m1->m1

//Add m1+m2->m2

// rax+16 -> rax (i+=2)

// rdx+8 -> rdx (j+=1)

// rax == 327

// jump to L2 if not equal
//store aligned m3 into C[k,k+1]
//store aligned m2 into C[l,I+1]

And in Conclusion, ...

Amdahl’s Law: Serial sections limit speedup
Flynn Taxonomy

Intel SSE SIMD Instructions

— Exploit data-level parallelism in loops

— One instruction fetch that operates on multiple
operands simultaneously

— 128-bit XMM registers
SSE Instructionsin C

— Embed the SSE machine instructions directly into C
programs through use of intrinsics

— Achieve efficiency beyond that of optimizing compiler

