
CS	110
Computer	Architecture	

Lecture	21:	
Warehouse-Scale	Computing,	MapReduce,	

and	Spark	
Instructor:

Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

New-School	Machine	Structures

• Parallel	Requests
Assigned	 to	computer
e.g.,	Search	“cats”

• Parallel	Threads
Assigned	 to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	 instructions

• Parallel	Data
>1	data	item	@	one	 time
e.g.,	Deep	Learning	for	

image	classification

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages 2

Smart
Phone

Warehouse	
Scale	

Computer
Harness

Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Software								Hardware

2011
• Google	disclosed	that	it	
continuously	uses	enough	
electricity	to	power	200,000	
homes,	but	it	says	that	in	doing	so,	
it	also	makes	the	planet	greener.

• Average	energy	use	per	typical	
user per	month	is	same	as	running	
a	60-watt	bulb	for	3	hours	(180	
watt-hours).

3

Urs Hoelzle,		Google	 SVP

http://www.nytimes.com/2011/09/09/technology/google-details-and-defends-its-use-
of-electricity.html

Google’s	WSCs

45/19/16

Ex:	In	Oregon

Containers	in	WSCs

5

Inside	WSC Inside	Container

Server,	Rack,	Array

6

Google	Server	Internals

7

Google	Server

Warehouse-Scale	Computers
• Datacenter
– Collection	of	10,000	to	100,000	servers
– Networks	connecting	them	together

• Single	giganticmachine
• Very	large	applications	(Internet	service):

search,	email,	video	sharing,	social	networking
• Very	high	availability
• “…WSCs	are	no	less	worthy	of	the	expertise	of	computer	

systems	architects	than	any	other	class	of	machines”		
Barroso and	Hoelzle,	2009

8

Unique	to	WSCs
• Ample	Parallelism
– Request-level	Parallelism:	ex:	Web	search
– Data-level	Parallelism:	ex:	Image	classifier	training

• Scale	and	its	Opportunities/Problems
– Scale	of	economy:	low	per-unit	cost
– Cloud	computing:	rent	computing	power	with	low	costs	
(ex:	AWS)

– High	#	of	failures
ex:	4	disks/server,	annual	failure	rate:	4%
àWSC	of	50,000	servers:	1	disk	fail/hour

• Operation	Cost	Count
– Longer	life	time	(>10	years)
– Cost	of	equipment	purchases	<<	cost	of	ownership

9

WSC	Architecture

10

1U	Server:
8	cores,	
16	GB	DRAM,	
4x1	TB	disk

Rack:
40-80	severs,
Local	Ethernet	(1-10Gbps)	switch
(30$/1Gbps/server)

Array	(aka	cluster):
16-32	racks
Expensive	switch
(10X	bandwidth	à 100x	cost)

WSC	Storage	Hierarchy

11

1U	Server:
DRAM:	16GB,	100ns,	20GB/s
Disk:					2TB,				10ms,		200MB/s

Rack(80	severs):
DRAM:	1TB,					300us,		100MB/s
Disk:					160TB,	11ms,			100MB/s

Array(30	racks):
DRAM:	30TB,			500us,	10MB/s
Disk:					4.80PB,	12ms,	10MB/s

Lower	latency	to	DRAM	in	another	server	than	local	disk
Higher	bandwidth	to	local	disk	than	to	DRAM	in	another	server

Workload	Variation

• Online	service:	Peak	usage	2X	off-peak
12

Noon Midnight

W
or
kl
oa
d

2X

Impact	on	WSC	software
• Latency,	bandwidth	à Performance
– Independent	data	set	within	an	array

– Locality	of	access	within	server	or	rack

• High	failure	rate	à Reliability,	Availability
– Preventing	failures	is	expensive

– Cope	with	failures	gracefully

• Varying	workloads	à Availability
– Scale	up	and	down	gracefully

• More	challenging	than	software	for	single	computers!

13

Power	Usage	Effectiveness
• Energy	efficiency
– Primary	concern	in	the	design	of	WSC
– Important	component	of	the	total	cost	of	ownership

• Power	Usage	Effectiveness	(PUE):

– A	power	efficiency	measure	for	WSC
– Not	considering	efficiency	of	servers,	networking
– Perfection	=	1.0
– Google	WSC’s	PUE	=	1.2

14

Total	Building	Power
IT	equipment	Power

PUE	in	the	Wild	(2007)

15

16

Load	Profile	of	WSCs

• Average	CPU	utilization	of	5,000	Google	servers,	6	month	period
• Servers	rarely	idle	or	fully	utilized,	operating	most	of	the	time	at	

10%	to	50%	of	their	maximum	utilization
17

Energy-Proportional	Computing:	
Design	Goal	of	WSC

• Energy	=	Power	x	Time,	Efficiency	=	Computation	/	Energy
• Desire:

– Consume	almost	no	power	when	idle	(“Doing	nothing	well”)
– Gradually	consume	more	power	as	the	activity	level	increases

18

Cause	of	Poor	Energy	Proportionality

19

• CPU:	50%	at	peek,	30%	at	idle
• DRAM,	disks,	networking:	70%	at	idle!
• Need	to	improve	the	energy	efficiency	of	peripherals

Cloud	Computing:	Scale	of	Economy	

20

Instance Per	
Hour

Ratio	to
small

Compute
Units

Virtual	
Cores

Compute	
Unit	
/	Core

Memory
(GiB)

Disk
(GiB) Address

Standard	Small $0.065 1.0 1.0 1 1.00 1.7 160 32bit

Standard	Large $0.260 4.0 4.0 2 2.00 7.5 850 64bit

Standard	Extra	Large $0.520 8.0 8.0 4 2.00 15.0 1680 64bit

High-Memory	Extra	Large $0.460 5.9 6.5 2 3.25 17.1 420 64bit

High-Memory Double	Extra	Large $0.920 11.8 13.0 4 3.25 34.2 850 64bit

High-Memory	Quadruple	Extra	Large $1.840 23.5 26.0 8 3.25 68.4 1680 64bit

High-CPU	Medium $0.165 2.0 5.0 2 2.50 1.7 350 32bit

High-CPU	Extra	Large $0.660 8.0 20.0 8 2.50 7.0 1680 64bit

• March	2014	AWS	Instances	&	Prices
• Closest	computer	in	WSC	example	is	Standard	Extra	
• At	these	low	rates,	Amazon	EC2	can	make	money!

– even	if	used	only	50%	of	time
• Virtual	Machine(VM)	plays	an	important	role

Agenda
• Warehouse	Scale	Computing

• Request-level	Parallelism
e.g.	Web	search

• Data-level	Parallelism
– Hadoop,	Spark

– MapReduce

• (Bonus)	Convolutional	Neural	Networks

21

Request-Level	Parallelism	(RLP)
• Hundreds	of	thousands	of	requests	per	sec.
– Popular	Internet	services	like	web	search,	social	
networking,	…

– Such	requests	are	largely	independent
• Often	involve	read-mostly	databases
• Rarely	involve	read-write	sharing	or	synchronization	
across	requests

• Computation	easily	partitioned	across	different	
requests	and	even	within	a	request	

22

Google	Query-Serving	Architecture

23

Anatomy	of	a	Web	Search

24

Anatomy	of	a	Web	Search	(1/3)
• Google	“cats”
– Direct	request	to	“closest”	Google	WSC
– Front-end	load	balancer	directs	request	to	one	of	many	
arrays	(cluster	of	servers)	within	WSC

– Within	array,	select	one	of	many	Goggle	Web	Servers	(GWS)	
to	handle	the	request	and	compose	the	response	pages

– GWS	communicates	with	Index	Servers	to	find	documents	
that	contains	the	search	word,	“cats”

– Return	document	list	with	associated	relevance	score

25

Anatomy	of	a	Web	Search	(2/3)
• In	parallel,
– Ad	system:	run	ad	auction	for	bidders	on	search	terms

• Use	docids (Document	IDs)	to	access	indexed	documents
• Compose	the	page
– Result	document	extracts	(with	keyword	in	context)	
ordered	by	relevance	score

– Sponsored	links	(along	the	top)	and	advertisements	(along	
the	sides)

26

Anatomy	of	a	Web	Search	(3/3)
• Implementation	strategy
– Randomly	distribute	the	entries

– Make	many	copies	of	data	(a.k.a.	“replicas”)

– Load	balance	requests	across	replicas

• Redundant	copies	of	indices	and	documents

– Breaks	up	search	hot	spots,	e.g.	“Taylor	Swift”

– Increases	opportunities	for	request-level	parallelism

– Makes	the	system	more	tolerant	of	failures

27

Clicker/Peer	Instruction:
Which	Statement	is	True

• A:	Idle	servers	consume	almost	no	power.

• B:	Disks	will	fail	once	in	20	years,	so	failure	is	not	a	
problem	of	WSC.

• C:	The	search	requests	of	the	same	keyword	from	
different	users	are	dependent.

• D:	More	than	half	of	the	power	of	WSCs	goes	into	
cooling.

• E:	WSCs	contain	many	copies	of	data.
28

Agenda
• Warehouse	Scale	Computing

• Request-level	Parallelism
e.g.	Web	search

• Data-level	Parallelism
– MapReduce

– Hadoop,	Spark

• (Bonus)	Convolutional	Neural	Networks

29

Data-Level	Parallelism	(DLP)
• SIMD
– Supports	data-level	parallelism	in	a	single	machine

– Additional	instructions	&	hardware

e.g.	Matrix	multiplication	in	memory

• DLP	on	WSC

– Supports	data-level	parallelism	across	multiple	machines

– MapReduce	&	scalable	file	systems

30

What	is	MapReduce?
• Simple	data-parallel	programming	model and	

implementation for	processing	large	dataset
• Users	specify	the	computation	in	terms	of	
– a	map function,	and	
– a	reduce function

• Underlying	runtime	system
– Automatically	parallelize the	computation	across	large	
scale	clusters	of	machines.

– Handlesmachine	failure
– Schedule inter-machine	communication	to	make	efficient	
use	of	the	networks

31

Jeffrey	Dean	and	Sanjay	Ghemawat,	“MapReduce:	Simplified	Data	Processing	on	Large	
Clusters,”	6th USENIX	Symposium	on	Operating	Systems	Design	and	Implementation,	2004.	

What	is	MapReduce used	for?
• At	Google:

– Index	construction	for	Google	Search
– Article	clustering	for	Google	News
– Statistical	machine	translation
– For	computing	multi-layers	street	maps

• At	Yahoo!:
– “Web	map”	powering	Yahoo!	Search
– Spam	detection	for	Yahoo!	Mail

• At	Facebook:
– Data	mining
– Ad	optimization
– Spam	detection

32

Inspiration:	Map	&	Reduce	Functions,	
ex:	Python	

Calculate	:	

33

n2
n=1

4

∑

A = [1, 2, 3, 4]
def square(x):

return x * x
def sum(x, y):

return x + y
reduce(sum,

map(square, A))

1 2 3 4

1 4 9 16

5 25

30

• Map:	(in_key, in_value) à list(interm_key, interm_val)
map(in_key, in_val):
// DO WORK HERE
emit(interm_key,interm_val)

– Slice	data	into	“shards”	or	“splits”	and	distribute	to	workers
– Compute	set	of	intermediate	key/value	pairs

• Reduce:	(interm_key, list(interm_value)) à list(out_value)
reduce(interm_key, list(interm_val)):
// DO WORK HERE
emit(out_key, out_val)

– Combines	all	intermediate	values	for	a	particular	key
– Produces	a	set	of	merged	output	values	(usually	just	one)

MapReduce Programming	Model

34

User-written	Map	function	reads	the	document	data	and
parses	out	the	words.	For	each	word,	it	writes	the	(key,	value)	
pair	of	(word,	1).	That	is,	the	word	is	treated	as	the	intermediate	
key	and	the	associated	value	of	1	means	that	we	saw	the	word	
once.

Map phase:	(doc	name,	doc	contents)	à list(word,	count)
// “I do I learn” à [(“I”,1),(“do”,1),(“I”,1),(“learn”,1)]
map(key, value):
for each word w in value:

emit(w, 1)

MapReduce Word	Count	Example

35

Task	of	counting	the	number	of	occurrences	of	each	
word	in	a	large	collection	of	documents.	

The	intermediate	data	is	then	sorted	by	MapReduce by	keys	and	
the	user’s	Reduce	function	is	called	for	each	unique	key.	In	this	
case,	Reduce	is	called	with	a	list	of	a	"1"	for	each	occurrence	of	
the	word	that	was	parsed	from	the	document.	The	function	adds	
them	up	to	generate	a	total	word	count	for	that	word.

Reduce	phase:	(word,	list(counts))	à (word,	count_sum)
// (“I”, [1,1]) à (“I”,2)
reduce(key, values):
result = 0
for each v in values:

result += v
emit(key, result)

MapReduce Word	Count	Example

36

Task	of	counting	the	number	of	occurrences	of	each	
word	in	a	large	collection	of	documents.	

MapReduce Implementation

37

MapReduce Execution

38

(1) Split	inputs,	
start	up	programs	
on	a	cluster	of	
machines

MapReduce Execution

39

(2) Assign	map	&	
reduce	tasks	to	
idle	workers

MapReduce Execution

40

(3)	Perform	a	map	task,	
generate	intermediate	
key/value	pairs
(4)	Write	to	the	buffers

MapReduce Execution

41

(5)	Read	intermediate	
key/value	pairs,
sort	them	by	its	key.

MapReduce Execution

42

(6)	Perform	a	reduce	task	
for	each	intermediate	key,
write	the	result	to	the	
output	files

Big	Data	Framework:	Hadoop &	Spark
• Apache	Hadoop
– Open-source	MapReduce Framework
– Hadoop	Distributed	File	System	(HDFS)
– Hadoop	YARN	Resource	Management
– MapReduce	Java	APIs
– more	than	half	of	the	Fortune	50	used	Hadoop	(2013)

• Apache	Spark
– Fast	and	general	engine	for	large-scale	
data	processing.

– Running	on	HDFS
– Provides	Java,	Scala,	Python	APIs	for

• Database
• Machine	learning
• Graph	algorithm 43

Summary
• Warehouse	Scale	Computers
– New	class	of	computers
– Scalability,	energy	efficiency,	high	failure	rate

• Request-level	parallelism	
e.g.	Web	Search

• Data-level	parallelism	on	a	large	dataset
– MapReduce
– Hadoop,	Spark

44

