CS 110
Computer Architecture
Lecture 22:

Operating Systems, Interrupts, Virtual
Memory

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

CA so far...

C Programs

#include <stdlib.h>

int fib(int n) {
return

MIPS Assembly

. foo

Project2

1w $tO0,
addi $t1,

4($r0)
$t0, 3

fib(n-1) +
fib(n-2);
}
A Project 1

beqg $tl1, $t2, foo
I nop
mo At (" ey
udtion Fetch |, [mory te
'
+4 '
. ' TOsers/mass/Deskiop/0/Istmanips.s - MARS 4.5
] File Edit Run Settings Tools Help
: Ing[25:21) Run speed at max (no interaction)
v - < TSTO] <
. I [OTEm®E] $e[%[O[O[Z][xX[Cle]90/0[d] @ Q
\ T T
P R | [+ [ins20:)
- R —
— b [Dta J I o | S [ETEEE Coproc1 | Coproco |
T Instruction - — v
Memory - Name Namber Value
Memory $zero 0 0x00000000
St Address Taic ot 1 oxeonoooso
| 0x00400000 0x0C100021 jal. 0x00400064 6 main: jal create_default_list s 2 oxeonoo0co
)) 000400004 00040021 acdu 16,52, 50 7 ddu $0, SU0, S0 # Sv0 = $s0 s head of node lis | 4y 5 oxooooonne
\ | 0x00400008 0:3co11001 lui $1,0x00001001 10: 520, start_nsg sa0 4 odwooooo00
. | DxD040000C 034240000 or’ 4,51, 0x00000000 sa1 s odo000000
: | 0x00400010 024020004 addiu 52,50, 0x00000004 11: w0, 4 a2 5 oxooooo0
| Dx00400014 0xD000000C syscall 1 syscall sa3 7 oxa0000000
' | 0x00400018 0x02002021addu $4,$16,50 addu $a0, $s0, $0 $t0 8 0x00000000
- Il] 0x0040001c 0xDC100030 jal 0x004000O jal print_list st1 9 0x00000000
- Regr ASC ALUQr MemWr | 0x00400020 0x0c10003b jal c jat nt_newlin st2 10 0x00000000
| 0x00400024 0x02002021 addu 54,516, 50 aids sa0, 50, S0 # load the address of the first | |st3 1 oxcooo000
P | 000400023 0x0c100013 jal. 0x0040004C jal map sta L oion000e0
] 0x0040002c 0:3co11001 lui $1,0x00001001 b sa0, endaso sts 1 oxoooo0oo
| 0x00400030 0x3424000¢ ors $4,51,010000000€ sto 1@ oxcon0000
- | 000400034 0x24020004 adiu £2,50,0x00000004 29: U e s - s 15 oxdooooe
| 000400038 0xa000000C syscall 300 syscall 550 B oxeon0000
//\\ T 00040003 0x02002021 addu 54,516, 50 : e sa0, 5o, 0 s T oxoonne
| 0x00400040 Gx0C100030 Jal. 0x004000co a: jal print_tist 52 1 oxeo000000
| 000400044 0x24020003 addiu 52,50, 0x00000003 36: U s, T o 19 oxo0000000
554 2 0000000
56 2 oxooooooe
8 — $s7 23 0x00000000
Aadess Vel 401 Value (4 Ere) Vil v Value (410, it 24 oxaoooonn
ox10010000 ox7az3694c ox6e656220 oxaass726t o | (st % oxeoo0o00
ox10010020 000000000 ax00000000 0x00000000 o | |50 3 oxeoooonno
Byte 010010040 0xe0000000 000000000 0x00000000 o | sa 27 oxoooo000
Hit 3130 LRy 43210 oo Data ox10010060 000000000 ax00000000 0x00000000 ox | lsgp 2 oxonssese
offset 0x10010080 0x00000000 0x00000000 0x00000000 ox $sp 29 ox7fffeffc
Tag 20 8 Block offset perreprey o o oo " R vowome
Index =
Index Valid_Tag Data
o[T T T
) 4 ©
= o0

So how is this any different?

Storage

Adding 1/0

C Programs
#include <stdlib.h>
i MIPS Assembly int fib(int n) |
Project 2 b (n-1) +
ifzosoto, 4(5r0)) fib(n=2);
CPU addi $tl1, $t0, 3
beqg $tl1, $t2, foo
nop
Project1
= Screen Keyboard Storage
/\ /\ A\
| A
Caches 1/0 (Input/Output)

Memory

b

Bytese=
Data

Program

Raspberry Pi (< 300RMB on jd.com)

e ———————— —— —— — — — —— — —— —

€]
s wR50 04 |
"t wR4 -

Raspberry |Pi)Model B+ V1.2 € A48, 6
(@©Raspberry Pi-2014 . ks

R B C = $his O Serial I/O
CPU+Ss, etc. e (USB)

Memory

LLLLLI AT LR]) OUZ
-~

Storage I/O
(Micro SD Card)

b
o e v i
. 4 . 2081 —
= ,.,‘“l ' C56 = os HEm Lmdd 4
el T ®ownw
Ud sm_ il Qo 8o dir o
e

e[S 53 iy we gt

:JE il = o e B
N lawhss O prre o N Network I/0

AR T Screen I/0 (Ethernet)

)\

e L I RLIN

It’s a real computer!

-
. e of
ANN w2 ¥ S
'_' ;‘
.‘, ™ 3
; b

But walit...

* That’s not the same! When we run MARS, it only
executes one program and then stops.

* When | switch on my computer, | get this:

}

Applications

E O

Videos

Files & Folders

£

How fast.ogg

c]
G
=
-]
B
A
L]
)
2

'y @ rash

Devices

[®21 6B Volume
[® 47 GB Volume.
®2168Volume
©21GBVolume
@478 Volume
@ computer

1) 18:53 %
Filter results +

Categories +
Ap| Books
News
Photo: Recipes
Reference Social ..
=

TextEntry UbuntuOne

Videos Weather
web

Sources v

Amazon Applications W

Network

i Templates oitems Folder |-
i Videos

[Exemples 9,0kB Text

Oitems Fotder |

= &> 7

Printers Sound Wacom Tablet

@ B O ©
Backup Details Landscape Software & Time & Date Universal User Accounts
Service Updates Access

System

Nebwark

Yes, but that’s just software! The Operating System (OS

Well, “just software”

* The biggest piece of software on your machine?

* How many lines of code? These are guesstimates:

Mic

deth

soft Visual Studio 2012

US Army Future Combat System
fast battlefield network system (aborted)

Debian 5.0 codebase
free, o

Mac OS X * Tg

C ftwar
average mo

OOOOO

Codebases (in millions of lines of code). CC BY-NC 3.0 — David McCandless © 2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

What does the OS do?

One of the first things that runs when your computer
starts (right after firmware/ bootloader)
Loads, runs and manages programs:

— Multiple programs at the same time (time-sharing)
— |Isolate programs from each other (isolation)

— Multiplexresources between applications(e.g., devices)
Services: File System, Network stack, etc.

Finds and controls all the devices in the machine in a
general way (using “device drivers”)

Agenda

Devices and I/O

OS Boot Sequence and Operation
Multiprogramming/time-sharing
Introduction to Virtual Memory

10

e Devices and /0

Agenda

11

How to interact with devices?

* Assume a program running on a CPU. How does it
interact with the outside world?

* Need I/O interface for Keyboards,
Network, Mouse, Screen, etc.

— Connect to many types of devices

— Control these devices, respond
to them, and transfer data

— Present them to user
programs so
they are useful <

Operating System

cmd reg.
datareg.

Instruction Set Architecture for I/O

* What must the processor do for I/O?

— Input: reads a sequence of bytes
— QOutput: writes a sequence of bytes

 Some processors have special input and output
instructions

e Alternative model (used by MIPS):
— Use loads for input, stores for output (in small pieces)

— Called Memory Mapped Input/Output

— A portion of the address space dedicated to
communication paths to Input or Output devices (no
memory there)

13

Memory Mapped I/0

e Certain addresses are not regular memory

* |nstead, they correspond to registersin |/O devices

address
OXFFFFFFFF

R
_—
-
-

OXFFFF0000 cntrl reg.
~~~~~~~~~~ datareg.

14



Processor-I/O Speed Mismatch

1GHz microprocessor can execute 1B load or store
instructions per second, or 4,000,000 KB/s data rate

* |/O data rates range from 0.01 KB/s to 1,250,000 KB/s
Input: device may not be ready to send data as fast as
the processor loads it

* Also, might be waiting for human to act

Output: device not be ready to accept data as fast as
processor stores it

What to do?

15



Processor Checks Status before Acting

Path to a device generally has 2 registers:

* Control Register, saysit’s OK to read/write (/O ready) [think
of a flagman on a road]

* DataRegister, contains data
Processor reads from Control Register in loop, waiting

for device to set Ready bit in Controlreg
(0 =>1) tosay it’s OK
Processor then loads from (input) or writes to (output)

data register

* Load fromor Store into Data Register resets Ready bit
(1 => 0) of Control Register

This is called “Polling”

16



/O Example (polling)

* Input: Read from keyboard into $v0

lui $t0, Oxffff #E££££0000
Waitloop: lw $tl, 0($t0) #control

andi $tl1,S$tl,0x1

begq S$tl,$zero, Waitloop

lw Sv0, 4($t0) #data

* Qutput: Write to display from $a0

lui $St0, Oxffff HL£E£££0000
Waitloop: 1w $tl, 8($t0) #control
andi $tl,$tl1l,0x1

beq Stl,S$zero, Waitloop
sSW Sa0, 12($t0) #data

“Ready” bitis from processor’s point of view!

17



Cost of Polling?

* Assume for a processor with a 1GHz clock it takes
400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning).
Determine % of processor time for polling

— Mouse: polled 30 times/sec so as not to miss user
movement

— Hard disk: assume transfers data in 16-Byte chunks and can
transfer at 16 MB/second. Again, no transfer can be
missed. (we’ll come up with a better way to do this)



% Processor time to poll

* Mouse Polling [clocks/sec]
=30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]
* % Processor for polling:
12*103 [clocks/s] / 1*109 [clocks/s] = 0.0012%
=> Pollingmouse little impact on processor

19



Clicker Time

Hard disk: transfers data in 16-Byte chunks and can
transfer at 16 MB/second. No transfer can be missed.
What percentage of processor time is spent in polling
(assume 1GHz clock)?

A: 2%
* B:4%
C: 20%
D: 40%
E: 80%



% Processor time to poll hard disk

* Frequency of Polling Disk
=16 [MB/s] / 16 [B/poll] = 1M [polls/s]
e Disk Polling, Clocks/sec

= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

* % Processor for polling:
400*106 [clocks/s] / 1*109 [clocks/s] = 40%

=> Unacceptable

(Polling is only part of the problem — main problem is that
accessing in small chunks is inefficient)

21



What is the alternative to polling?

Wasteful to have processor spend most of its time
“spin-waiting” for 1/0 to be ready

Would like an unplanned procedure call that would
be invoked only when I/O device is ready

Solution: use exception mechanism to help
/0. Interrupt program when |I/O ready, return when
done with data transfer

Allow to register (post) interrupt handlers: functions
that are called when an interrupt is triggered

22



Interrupt-driven 1/0

_ 1. Incoming interrupt suspends instruction stream
Handler Execution 2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU
Perform a jal to the handler (needs to store any state)
4. Handler run on current stack and returns on finish

w

Stack Frame

(thread doesn’t notice that a handler was run)

Stack Frame handler: lui $t0, Oxffff
1w  $tl, 0($t0)
andi $tl1,S$tl1,0x1

1w Sv0, 4(S$t0)
SW $tl, 8(S$t0)

Stack Frame
ret

Label: sll1 $t1,$s3,2
addu $tl1,Stl,S$s5

lw  $t1,0($tl) €— <
add $sl1,$sl,$tl CPU Interrupt Table

addu $s3,S$s3,$s4
bne $s3,$s2,Label Interrupt(SPI0) > SPIO handler

23



Agenda

* OS Boot Sequence and Operation

24



What happens at boot?

* When the computer switches on, it does the same as
MARS: the CPU executes instructions from some
start address (stored in Flash ROM)

CPU

PC = 0x2000 (some default value) —

— | Memory mapped i

Address Space

0x2000:
addi $t0, S$zero, 0x1000
1w $t0, 4($r0)

(Code to copy firmware into

into it)

regular memory and jump

25



What happens at boot?

* When the computer switches on, it does the same as
MARS: the CPU executes instructions from some
start address (stored in Flash ROM)

1. BIOS: Find a storage 4. Init: L.aunch' an application
device and load first e that waits for input in loop

relu: <speedup> x
pool: <speedup> x

sector (blOCk of data) B (e.g., TerminaI/Desktop/...

Which layer should we opt,

Diskette Drive B : None Serial Port(s) ' : 30 2F0 Sichilayery
Disk : LBA,ATA 100, 250GB Parallel Port
: LBA,ATA 100, 250GB DDR at Bank(s)

~ti®hive22 Linux x86_64
None

~/src/proj3/proj3_star
answers.txt cnn  cnnd cnn.py data LICENSE Makefil

csblc-tiPhive22 Linux x86_64
bled dsgc/proia/prol3 stastent ALl sac elcone to the KNOPPIX live GNU/Linux on DUD!

cnn.c main.c python.c util.c
Devices Listing
Dev Fun Uendor Device SUID SSID Class Device Class cs6lc-tiehivezz, N

s (D S e P O o ing Linux Kernel 2.6.24.4.
8086 2668 Hultinedia Devic ke et o 95 te doth. 124132kB 118180kB
8086 2658 USB 1.1 Host Cntrlr
8086 2659 Cntrlr o ) hde [QEMU CD-ROM1

-6
8086 2650 14 B 1.1 Host Cntrlr S arc/orofa/prol_starter ;si“ GL IR (s 7T g KNOPPIX DUD at /deu/hdc. ..
€ EE‘SE 4 B 1 H Catrlr . Foun¥ primary KNOPPIX comp: ed image at /cdrom/KNOPPIX/KNOPPIX
asc 1 Sﬂt‘fi USB 1 Cntrlr Found 8dditional KNOPPIX Comprossed inage at scdron/KNOP? IX/KNOPP

srandisk shared memory
266A
0421

8212 0000 ()l)l]l\ 0180 Mass Storage Cntrlr lead-only DUD SUCCt ully merged with read-urite /ramd
4320 1458 E000 0200 Ne: Cntrlr 2
itroller

PUNNUNROO

Pentiun 11 (]’lumﬂt]\) 1662MHz, 128 KB Cache
1 interfacing with apm driver 1.16ac and APM BIOS 1.2
FPM Bios found, pouer management functions emabled.

1SB found, managed by udev
Ubuntu 8.84, kernel 2.6.24-16-generic wire found, managed by udev
oo oa er S Ore On e Ubuntu 8.84, kernel 2.6.24-16-generic (recovery mode) udev hot-plug hardware detection
° 4 . *) Ubuntu 8.84, memtest86+
)
disk): Load the OS kernel from
:

. . . . . B : e, . .
disk into a location in memory 3 0_5 °°t. Initialize
. . . e Erter o et the soecron 0o, “a Yo bt A" services, drive rs, etc.
and jump into it. G

commands before booting, or 'c’ for a command-line.



Launching Applications

Applications are called “processes” in most OSs.
Created by another process calling into an OS routine
(using a “syscall”, more details later).

— Dependson OS, but Linux uses fork to create a new
process, and execve to load application.

Loads executable file from disk (using the file system
service) and puts instructions & data into memory
(.text, .data sections), prepare stack and heap.

Set argc and argv, jump into the main function.



Supervisor Mode

* If something goes wrong in an application, it could
crash the entire machine. And what about malware,

etc.?

 The OS may need to enforce resource constraints to
applications (e.g., access to devices).

* To help protect the OS from the application, CPUs have
a supervisor mode bit.

— A process can only access a subset of instructions and
(physical) memory when notin supervisor mode (user
mode).

— Process can change out of supervisor mode using a special
instruction, but not intoit directly — only using an interrupt.



Syscalls

 What if we want to call into an OS routine? (e.g., to
read a file, launch a new process, send data, etc.)

— Need to perform a syscall: set up function arguments in
registers, and then raise software interrupt

— OS will perform the operation and return to user mode

* Also, OS uses interrupts for scheduling process
execution:
— OS sets scheduler timer interrupt then drops to user mode
and start executing a user task, when interrupts triggers,

switch into supervisor mode, select next task to execute (&
set timer) and drop back to user mode.

* This way, the OS can mediate access to all resources,
including devices and the CPU itself.



Agenda

* Multiprogramming/time-sharing

30



Multiprogramming
The OS runs multiple applications at the same time.

But not really (unless you have a core per process)

Switches between processes very quickly. This is
called a “context switch”.

When jumping into process, set timer interrupt.

— When it expires, store PC, registers, etc. (process state).
— Pick a different process to run and load its state.

— Set timer, change to user mode, jump to the new PC.

Deciding what process to run is called scheduling.



Protection, Translation, Paging

e Supervisor mode does not fully isolate applications
from each other or from the OS.
— Application could overwrite another application’s memory.

— Also, may want to address more memory than we actually
have (e.g., for sparse data structures).

e Solution: Virtual Memory. Gives each process the
illusion of a full memory address space that it has
completely for itself.

32



Agenda

* Introduction to Virtual Memory

33



“Bare” 5-Stage Pipeline

Physical Physical

Address | |nst. Decod Address | Data
| Cache ecode P+ | Cache
Physical "| Memory Controller ) Physical
Address Address

| Physical Address

Main Memory (DRAM)

* |In a bare machine, the only kind of address is a
physical address

34



Dynamic Address Translation

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
=> base register — add offset to each address

Protection

Independent programs should not affect
each other inadvertently
=> bound register — check range of access

(Note: Multiprogramming drives requirement for

resident supervisor (OS) software to manage context

switches between multiple programs)

prog2

OS

Physical Memory

35



Simple Base and Bound Translation

SE— Segment Length

Bounds
—> Violation?

Physical
Address

Logical
Address

Base Physical Address

Program
Address Space

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

36

Physical Memory



Base and Bound Machine

Bounds Violation? Bounds Violation?

Logical Logical

Address Address
Inst. Decode oate
Cache Cache
hysical 4 Physical
Address Address
Physical Physical
Address Address
» Memory Controller <

IPhysicaI Address

Main Memory (DRAM)

[ Can [fol_d addition of base registerinto (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers) |

37



Memory Fragmentation

Users 4 & 5 Users 2 & 5
0S arrive OS leave
—> >pace —>

user 1 user 116K

user 2

user 4

s QI user 4

NN S

user 5| 2Kl
| | | |

As users come and go, the storage is “fragmented”.

Therefore, at some stage programs have to be moved
around to compact the storage.

38



Paged Memory Systems

* Processor-generated address can be split into:

page number offset

* A page table containsthe physical address of the base of each page

1
0 0 0
1 1
2 2
3 3 - 3
Address Space Page Table
of User-1 of User-1 2

Physical
Memory

Page tables make it possible to store the
pages of a program non-contiguously.

39



Private Address Space per User

User 1

Page Table

User 2 W%

Page Table

User 3

Page Table

o

e Each user has a page table
e Page table contains an entry for each user page

40



Where Should Page Tables Reside?

e Space required by the page tables (PT) is proportional
to the address space, number of users, ...

7= Too large to keep in cpu registers

* |dea: Keep PTs in the main memory

— Needs one reference to retrieve the page base address and
another to access the data word

=> doubles the number of memory references!

41



Page Tables in Physical Memory

User 1 Virtual
Address Space

Physical Memory

User 2 Virtual

Address Space W

42



In Conclusion

* Once we have a basic machine, it’'s mostly up to the
OS to use it and define application interfaces.

 Hardware helps by providing the right abstractions
and features (e.g., Virtual Memory, I/0).



