CS 110 Computer Architecture Lecture 25:

Dependability and RAID

Instructor: Sören Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C

Review Last Lecture

- I/O gives computers their 5 senses
- I/O speed range is 100-million to one
- Polling vs. Interrupts
- DMA to avoid wasting CPU time on data transfers
- Disks for persistent storage, replaced by flash
- Networks: computer-to-computer I/O
 - Protocol suites allow networking of heterogeneous components. Abstraction !!!

Protocol Family Concept

Physical

Each lower level of stack "encapsulates" information from layer above by adding header and trailer.

Most Popular Protocol for Network of Networks

- <u>Transmission Control Protocol/Internet</u>
 <u>Protocol (TCP/IP)</u>
- This protocol family is the basis of the Internet, a WAN (wide area network) protocol
 - IP makes best effort to deliver
 - Packets can be lost, corrupted
 - TCP guarantees delivery
 - TCP/IP so popular it is used even when communicating locally: even across homogeneous LAN (local area network)

TCP/IP packet, Ethernet packet, protocols

- Application sends message
- TCP breaks into 64KiB segments, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers

Great Idea #6: Dependability via Redundancy

Redundancy so that a failing piece doesn't make the whole system fail

Great Idea #6: Dependability via Redundancy

- Applies to everything from datacenters to memory
 - Redundant datacenters so that can lose 1 datacenter but Internet service stays online
 - Redundant routes so can lose nodes but Internet doesn't fail
 - Redundant disks so that can lose 1 disk but not lose data (Redundant Arrays of Independent Disks/RAID)
 - Redundant memory bits of so that can lose 1 bit but no data (Error Correcting Code/ECC Memory)

Dependability

- Fault: failure of a component
 - May or may not lead to system failure

Dependability via Redundancy: Time vs. Space

- Spatial Redundancy replicated data or check information or hardware to handle hard and soft (transient) failures
- Temporal Redundancy redundancy in time (retry) to handle soft (transient) failures

Dependability Measures

- Reliability: Mean Time To Failure (MTTF)
- Service interruption: Mean Time To Repair (MTTR)
- Mean time between failures (MTBF)
 MTBF = MTTF + MTTR
- Availability = MTTF / (MTTF + MTTR)
- Improving Availability
 - Increase MTTF: More reliable hardware/software + Fault Tolerance
 - Reduce MTTR: improved tools and processes for diagnosis and repair

Time

4.0

Availability Measures

- Availability = MTTF / (MTTF + MTTR) as %
 MTTF, MTBF usually measured in hours
- Since hope rarely down, shorthand is "number of 9s of availability per year"
- 1 nine: 90% => 36 days of repair/year
- 2 nines: 99% => 3.6 days of repair/year
- 3 nines: 99.9% => 526 minutes of repair/year
- 4 nines: 99.99% => 53 minutes of repair/year
- 5 nines: 99.999% => 5 minutes of repair/year

Reliability Measures

- Another is average number of failures per year: Annualized Failure Rate (AFR)
 - E.g., 1000 disks with 100,000 hour MTTF
 - 365 days * 24 hours = 8760 hours
 - (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed disks per year on average
 - 87.6/1000 = 8.76% annual failure rate
- Google's 2007 study* found that actual AFRs for individual drives ranged from 1.7% for first year drives to over 8.6% for three-year old drives

*research.google.com/archive/disk_failures.pdf

Dependability Design Principle

- Design Principle: No single points of failure
 "Chain is only as strong as its weakest link"
- Dependability Corollary of Amdahl's Law
 - Doesn't matter how dependable you make one portion of system
 - Dependability limited by part you do not improve

Error Detection/ Correction Codes

- Memory systems generate errors (accidentally flipped-bits)
 - DRAMs store very little charge per bit
 - "Soft" errors occur occasionally when cells are struck by alpha particles or other environmental upsets
 - "Hard" errors can occur when chips permanently fail
 - Problem gets worse as memories get denser and larger
- Memories protected against failures with EDC/ECC
- Extra bits are added to each data-word
 - Used to detect and/or correct faults in the memory system
 - Each data word value mapped to unique code word
 - A fault changes valid code word to invalid one, which can be detected

Block Code Principles

- Hamming distance = difference in # of bits
- p = 0<u>1</u>1<u>0</u>11, q = 0<u>0</u>1<u>1</u>11, Ham. distance (p,q) = 2
- p = 011011,
 q = 110001,
 distance (p,q) = ?
- Can think of extra bits as creating a code with the data
- What if minimum distance between members of code is 2 and get a 1-bit error?

Richard Hamming, 1915-98 Turing Award Winner

Parity: Simple Error-Detection Coding

- Each data value, before it is written to memory is "tagged" with an extra bit to force the stored word to have *even*
 - parity:

 Each word, as it is read from memory is "checked" by finding its parity (including the parity bit).

- Minimum Hamming distance of parity code is 2
- A non-zero parity check indicates an error occurred:
 - 2 errors (on different bits) are not detected
 - nor any even number of errors, just odd numbers of errors are detected

Parity Example

- Data 0101 0101
- 4 ones, even parity now
- Write to memory: 0101 0101 0 to keep parity even
- Data 0101 0111
- 5 ones, odd parity now
- Write to memory: 0101 0111 1 to make parity even

- Read from memory 0101 0101 0
- 4 ones => even parity, so no error
- Read from memory 1101 0101 0
- 5 ones => odd parity, so error
- What if error in parity bit?

Suppose Want to Correct 1 Error?

- Richard Hamming came up with simple to understand mapping to allow Error Correction at minimum distance of 3
 - Single error correction, double error detection
- Called "Hamming ECC"
 - Worked weekends on relay computer with unreliable card reader, frustrated with manual restarting
 - Got interested in error correction; published 1950
 - R. W. Hamming, "Error Detecting and Correcting Codes," *The Bell System Technical Journal*, Vol. XXVI, No 2 (April 1950) pp 147-160.

Detecting/Correcting Code Concept

- **Detection**: bit pattern fails codeword check
- Correction: map to nearest valid code word

Hamming Distance: 8 code words

- No 1 bit error goes to another valid codeword
- ¹/₂ codewords are valid

Hamming Distance 3: Correction Correct Single Bit Errors, Detect Double Bit Errors

- No 2 bit error goes to another valid codeword; 1 bit error near
- 1/4 codewords are valid

Administrivia

- Final Exam
 - Tuesday, June 21, 2016, 9:00-11:00
 - Location: H2 109 + 110
 - THREE cheat sheets (MT1,MT2, post-MT2)
 - Hand-written
- Project 3 will still come
 - Short/ easy but:
 - Competition:
 - Slowest 33 percentile and below: 80%
 - Fastest program: 100%
 - Linear scaling in between.
 - Time: What do you prefer? 1 week only, or till end of exam week?

Hamming Error Correction Code

- Use of extra parity bits to allow the position identification of a single error
- 1. Mark all bit positions that are powers of 2 as parity bits (positions 1, 2, 4, 8, 16, ...)
 - Start numbering bits at 1 at left (not at 0 on right)
- 2. All other bit positions are data bits (positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, ...)
- 3. Each data bit is covered by 2 or more parity bits

- 4. The position of parity bit determines sequence of data bits that it checks
- Bit 1 (0001₂): checks bits (1,3,5,7,9,11,...)
 Bits with least significant bit of address = 1
- Bit 2 (0010₂): checks bits (2,3,6,7,10,11,14,15,...)
 Bits with 2nd least significant bit of address = 1
- Bit 4 (0100₂): checks bits (4-7, 12-15, 20-23, ...)
 Bits with 3rd least significant bit of address = 1
- Bit 8 (1000₂): checks bits (8-15, 24-31, 40-47,...)
 Bits with 4th least significant bit of address = 1

Graphic of Hamming Code

Bit position		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Encoded data bits		p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	d11
	p1	Х		X		Х		X		Х		Х		X		X
Parity	p2		Х	Х			Х	Х			Х	Х			X	X
bit	p 4				X	Х	X	Х					Х	X	X	Х
coverage	p8								X	X	X	X	X	X	X	Х

• <u>http://en.wikipedia.org/wiki/Hamming_code</u>

- 5. Set parity bits to create even parity for each group
- A byte of data: 10011010
- Create the coded word, leaving spaces for the parity bits:
- __1_001_1010
 00000000111
 123456789012
- Calculate the parity bits

- Position 1 checks bits 1,3,5,7,9,11 (bold):
 1_001_1010. set position 1 to a _:
 1_001_1010
- Position 2 checks bits 2,3,6,7,10,11 (bold):
 0?1_001_1010. set position 2 to a _:
 0_1_001_1010
- Position 4 checks bits 4,5,6,7,12 (bold):
 0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4 to a _:
 0 1 1 _ 0 0 1 _ 1 0 1 0
- Position 8 checks bits 8,9,10,11,12:
 0 1 1 1 0 0 1 ? 1 0 1 0. set position 8 to a _:
 0 1 1 1 0 0 1 _ 1 0 1 0

- Position 1 checks bits 1,3,5,7,9,11:
 ?_1_001_1010. set position 1 to a 0:
 0_1_001_1010
- Position 2 checks bits 2,3,6,7,10,11:
 0?1_001_1010. set position 2 to a 1:
 011_001_1010
- Position 4 checks bits 4,5,6,7,12:
 0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4 to a 1:
 0 1 1 1 0 0 1 _ 1 0 1 0
- Position 8 checks bits 8,9,10,11,12:
 0 1 1 1 0 0 1 ? 1010. set position 8 to a 0:
 0 1 1 1 0 0 1 0 1010

- Final code word: <u>01110010</u>1010
- Data word: 1 001 1010

Hamming ECC Error Check

Suppose receive
 <u>011100101110</u>
 011100101110

Bit position		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Encoded data bits		p1	p2	d1	p4	d2	d3	d4	p8	d5	d6	d7	d8	d9	d10	d11
Parity bit coverage	p1	Х		Х		Х		X		Х		X		X		X
	p2		Х	Х			Х	Х			Х	Х			Х	X
	p 4				X	X	x	x					X	x	X	Х
	p8								X	X	X	X	Х	X	X	Х

Hamming ECC Error Check

Suppose receive
 <u>011100101110</u>

Hamming ECC Error Check

- Implies position 8+2=10 is in error
 <u>011100101110</u>

Hamming ECC Error Correct

• Flip the incorrect bit ... 011100101010

Hamming ECC Error Correct

Hamming Error Correcting Code

- Overhead involved in single error-correction code
- Let *p* be total number of parity bits and *d* number of data bits in *p* + *d* bit word
- If p error correction bits are to point to error bit (p + d cases)
 + indicate that no error exists (1 case), we need:

 $2^{p} >= p + d + 1,$

thus $p \ge \log(p + d + 1)$

for large *d*, *p* approaches log(*d*)

- 8 bits data => d = 8, 2^p = p + 8 + 1 => p = 4
- 16 data => 5 parity,
 32 data => 6 parity,
 64 data => 7 parity

Hamming Single-Error Correction, Double-Error Detection (SEC/DED)

• Adding extra parity bit covering the entire word provides double error detection as well as single error correction

1 2 3 4 5 6 7 8

 $p_1 p_2 d_1 p_3 d_2 d_3 d_4 p_4$

Hamming parity bits H (p₁ p₂ p₃) are computed (even parity as usual) plus the even parity over the entire word, p₄:

H=0 p₄=0, no error

 $H \neq 0 p_4 = 1$, correctable single error (odd parity if 1 error => $p_4 = 1$)

H≠0 p₄=0, double error occurred (even parity if 2 errors=>

p₄=0) *Typical modern codes in DRAM memory systems;* H=0 p₄=1, single error occurred in p₄ bit, not in rest of word 64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).

What if More Than 2-Bit Errors?

- Network transmissions, disks, distributed storage common failure mode is bursts of bit errors, not just one or two bit errors
 - Contiguous sequence of B bits in which first, last and any number of intermediate bits are in error
 - Caused by impulse noise or by fading in wireless
 - Effect is greater at higher data rates

Simple example: Parity Check Block

Data	10011010	10011010
1	01101100	01101100
	11110000	11110000
	-00101101-	·
	11011100	11011100
	00111100	00111100
	11111100	11111100
V	00001100	00001100
Check	00111011	00111011
	00000000	0 = Check! 00101101 Not 0 = Fail!

- Parity codes not powerful enough to detect long runs of errors (also known as *burst errors*)
- Better Alternative: *Reed-Solomon Codes*
 - Used widely in CDs, DVDs, Magnetic Disks
 - RS(255,223) with 8-bit symbols: each codeword contains
 255 code word bytes (223 bytes are data and 32 bytes are parity)

- For this code: n = 255, k = 223, s = 8, 2t = 32, t = 16
- Decoder can correct any errors in up to 16 bytes anywhere in the codeword

14 data bits 3 check bits 17 bits total 11010011101100 000 <--- input right padded by 3 bits <--- divisor 1011 01100011101100 000 <--- result 3 bit CRC using the 1011 <--- divisor polynomial $x^3 + x + 1$ 00111011101100 000 (divide by 1011 to get remainder) 1011 00010111101100 000 1011 00000001101100 000 <--- skip leading zeros 1011 0000000110100 000 1011 0000000011000 000 1011 0000000001110 000 1011 0000000000101 000 101 1

0000000000000 100 <--- remainder

- For block of k bits, transmitter generates an n-k bit frame check sequence
- Transmits *n* bits exactly divisible by some number
- Receiver divides frame by that number
 - If no remainder, assume no error
 - Easy to calculate division for some binary numbers with shift register
- Disks detect and correct blocks of 512 bytes with called Reed Solomon codes ≈ CRC

(In More Depth: Code Types)

- Linear Codes: This image
 Code is generated by G and in null-space of H
- Hamming Codes: Design the H matrix
 - d = 3 Set Columns nonzero, Distinct
 - d = 4 See Columns nonzero, Distinct, Odd-weight
- Reed-solomon codes:
 - Based on polynomials in GF(2^k) (I.e. k-bit symbols)
 - Data as coefficients, code space as values of polynomial:
 - $P(x) = a_0 + a_1 x^1 + \dots a_{k-1} x^{k-1}$
 - Coded: P(0),P(1),P(2)....,P(n-1)
 - Can recover polynomial as long as get any k of n
 - Alternatively: as long as no more than n-k coded symbols erased, can recover data.
- Side note: Multiplication by constant in GF(2^k) can be represented by k matrix: a [★]
 - Decompose unknown vector into k bits: $x=x_0+2x_1+...+2^{k-1}x_{k-1}$
 - Each column is result of multiplying a by 2ⁱ

Hamming ECC on your own

- Test if these Hamming-code words are correct. If one is incorrect, indicate the correct code word. Also, indicate what the original data was.
- 110101100011
- 111110001100
- 000010001010

Evolution of the Disk Drive

IBM 3390K, 1986

IBM RAMAC 305, 1956

Apple SCSI, 1986

Arrays of Small Disks

Can smaller disks be used to close gap in performance between disks and CPUs?

Replace Sm	all Number of L	arge Disks with La	rge Number o	f
	Small Dis	ks! (1988 Disks)		
	IBM 3390K	IBM 3.5" 0061	x70	
Capacity	20 GBytes	320 MBytes	23 GBytes	
Volume	97 cu. ft.	0.1 cu. ft.	11 cu. ft.	9X
Power	3 KW	11 W	1 KW	3X
Data Rate	15 MB/s	1.5 MB/s	120 MB/s	8X
I/O Rate	600 I/Os/s	55 I/Os/s	3900 IOs/s	6X
MTTF	250 KHrs	50 KHrs	??? Hrs	
Cost	\$250K	\$2K	\$150K	

Disk Arrays have potential for large data and I/O rates, high MB per cu. ft., high MB per KW, <u>but what about reliability?</u>

RAID: Redundant Arrays of (Inexpensive) Disks

- Files are "striped" across multiple disks
- Redundancy yields high data availability
 - Availability: service still provided to user, even if some components failed
- Disks will still fail
- Contents reconstructed from data redundantly stored in the array
 - => Capacity penalty to store redundant info
 - => Bandwidth penalty to update redundant info

Redundant Arrays of Inexpensive Disks RAID 1: Disk Mirroring/Shadowing

- Each disk is fully duplicated onto its "mirror"
 Very high availability can be achieved
- Bandwidth sacrifice on write: Logical write = two physical writes Reads may be optimized
- Most expensive solution: 100% capacity overhead

RAID 3: Parity Disk

10010011 11001101 10010011

logical record Striped physical records

P contains sum of 0
other disks per stripe 0
mod 2 ("parity") 1
If disk fails, subtract 1
P from sum of other
disks to find missing information

D

Redundant Arrays of Inexpensive Disks RAID 4: High I/O Rate Parity

Inspiration for RAID 5

- RAID 4 works well for small reads
- Small writes (write to one disk):
 - Option 1: read other data disks, create new sum and write to Parity Disk
 - Option 2: since P has old sum, compare old data to new data, add the difference to P
- Small writes are limited by Parity Disk: Write to D0, D5 both also write to P disk

RAID 5: High I/O Rate Interleaved Parity

Problems of Disk Arrays: Small Writes

RAID-5: Small Write Algorithm

1 Logical Write = 2 Physical Reads + 2 Physical Writes

And, in Conclusion, ...

- Great Idea: Redundancy to Get Dependability

 Spatial (extra hardware) and Temporal (retry if error)
- Reliability: MTTF & Annualized Failure Rate (AFR)
- Availability: % uptime (MTTF-MTTR/MTTF)
- Memory
 - Hamming distance 2: Parity for Single Error Detect
 - Hamming distance 3: Single Error Correction Code + encode bit position of error
- Treat disks like memory, except you know when a disk has failed—erasure makes parity an Error Correcting Code
- RAID-2, -3, -4, -5: Interleaved data and parity