
CS	110
Computer	Architecture	

Lecture	25:	
Dependability	and	RAID

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Review	Last	Lecture
• I/O	gives	computers	their	5	senses
• I/O	speed	range	is	100-million	to	one
• Polling	vs.	Interrupts
• DMA	to	avoid	wasting	CPU	time	on	data	transfers
• Disks	for	persistent	storage,	replaced	by	flash
• Networks:	computer-to-computer	I/O
– Protocol	suites	allow	networking	of	heterogeneous	
components.	Abstraction!!!

2

Protocol	Family	Concept

Message Message

TH Message TH Message TH TH

Actual Actual

Physical

Message TH Message TH
Actual ActualLogical

Logical

3

Each	lower	level	of	stack	“encapsulates”	information	
from	layer	above	by	adding	header	and	trailer.	

Most	Popular	Protocol	for	Network	of	
Networks

• Transmission	Control	Protocol/Internet	
Protocol	(TCP/IP)

• This	protocol	family	is	the	basis	of	the	Internet,	
a	WAN	(wide	area	network)	protocol
• IP	makes	best	effort	to	deliver	
• Packets	can	be	lost,	corrupted

• TCP	guarantees	delivery
• TCP/IP	so	popular	it	is	used	even	when	
communicating	locally:	even	across	homogeneous	
LAN	(local	area	network)

4

Message

TCP/IP	packet,	Ethernet	packet,	protocols

• Application	sends	message

TCP data

TCP Header
IP Header

IP DataEH

Ethernet Hdr

Ethernet Hdr
• TCP	breaks	into	64KiB	
segments,	adds	20B	header

• IP	adds	20B	header,	sends	to	
network
• If	Ethernet,	broken	into	
1500B	packets	with	headers,	
trailers

5

Great	Idea	#6:	
Dependability	via	Redundancy

• Redundancy	so	that	a	failing	piece	doesn’t	
make	the	whole	system	fail

6

1+1=2 1+1=2 1+1=1

1+1=2
2	of	3	agree

FAIL!

Increasing	transistor	density	 reduces	the	cost	of	redundancy

Great	Idea	#6:	
Dependability	via	Redundancy

• Applies	to	everything	from	datacenters	to	memory
– Redundant	datacenters	so	that	can	lose	1	datacenter	but	
Internet	service	stays	online

– Redundant	routes	so	can	lose	nodes	but	Internet	doesn’t	fail
– Redundant	disks	so	that	can	lose	1	disk	but	not	lose	data	
(Redundant	Arrays	of	Independent	Disks/RAID)

– Redundant	memory	bits	of	so	that	can	lose	1	bit	but	no	data	
(Error	Correcting	Code/ECC	Memory)

7

Dependability

• Fault:	failure	of	a	
component
– May	or	may	not	lead	to	
system	failure

Service	accomplishment
Service	delivered

as	specified

Service	interruption
Deviation	from
specified	service

FailureRestoration

8

Dependability	via	Redundancy:	
Time	vs.	Space

• Spatial	Redundancy	– replicated	data	or	check	
information	or	hardware	to	handle	hard	and	
soft	(transient)	failures

• Temporal	Redundancy	– redundancy	in	time	
(retry)	to	handle	soft	(transient)	failures

9

Dependability	Measures

• Reliability: Mean	Time	To	Failure	(MTTF)
• Service	interruption: Mean	Time	To	Repair	(MTTR)
• Mean	time	between	failures	(MTBF)
– MTBF	=	MTTF	+	MTTR

• Availability	=	MTTF	/	(MTTF	+	MTTR)
• Improving	Availability
– Increase	MTTF: More	reliable	hardware/software	+	Fault	
Tolerance

– Reduce	MTTR:	improved	tools	and	processes	for	diagnosis	
and	repair

10

Understanding	MTTF

11

Probability
of	Failure

1

Time

Understanding	MTTF

12

Probability
of	Failure

1

TimeMTTF

1/3 2/3

Availability	Measures

• Availability	=	MTTF	/	(MTTF	+	MTTR)	as	%
– MTTF,	MTBF	usually	measured	in	hours

• Since	hope	rarely	down,	shorthand	is	
“number	of	9s	of	availability	per	year”

• 1	nine:	90%	=>	36	days	of	repair/year
• 2	nines:	99%	=>	3.6	days	of	repair/year
• 3	nines:	99.9%	=>	526	minutes	of	repair/year
• 4	nines:	99.99%	=>	53	minutes	of	repair/year
• 5	nines:	99.999%	=>	5	minutes	of	repair/year

13

Reliability	Measures

• Another	is	average	number	of	failures	per	year:	
Annualized	Failure	Rate	(AFR)
– E.g.,	1000	disks	with	100,000	hour	MTTF	
– 365	days	*	24	hours	=	8760	hours
– (1000	disks	*	8760	hrs/year)	/	100,000	=	87.6	failed	
disks	per	year	on	average

– 87.6/1000	=	8.76%	annual	failure	rate
• Google’s	2007	study*	found	that	actual	AFRs	for	
individual	drives	ranged	from	1.7%	for	first	year	
drives	to	over	8.6%	for	three-year	old	drives

14

*research.google.com/archive/disk_failures.pdf

Dependability	Design	Principle

• Design	Principle:	No	single	points	of	failure
– “Chain	is	only	as	strong	as	its	weakest	link”

• Dependability	Corollary	of	Amdahl’s	Law
– Doesn’t	matter	how	dependable	you	make	one	
portion	of	system

– Dependability	limited	by	part	you	do	not	improve

15

Error Detection/	Correction	Codes
• Memory	systems	generate	errors	(accidentally	
flipped-bits)
– DRAMs store	very	little	charge	per	bit
– “Soft”	errors	occur	occasionally	when	cells	are	struck	by	
alpha	particles	or	other	environmental	upsets

– “Hard”	errors	can	occur	when	chips	permanently	fail
– Problem	gets	worse	as	memories	get	denser	and	larger

• Memories	protected	against	failures	with	EDC/ECC
• Extra	bits	are	added	to	each	data-word
– Used	to	detect	and/or	correct	faults	in	the	memory	system
– Each	data	word	value mapped	to unique	code	word
– A	fault	changes	valid	code	word	to invalid	one,	which	can	
be	detected

16

Block	Code	Principles
• Hamming	distance	=	difference	in	#	of	bits
• p =	011011,	q =	001111,	Ham.	distance	(p,q)	=	2
• p	=	011011,	
q =	110001,	
distance	(p,q)	=	?

• Can	think	of	extra	bits	as	creating
a	code	with	the	data

• What	if	minimum	distance	
between	members	of	code	is	2
and	get	a	1-bit	error? Richard	Hamming,	 1915-98

Turing	Award	Winner	
17

Parity:	Simple	Error-Detection	Coding
• Each	data	value,	before	it	is	

written	to	memory	is	“tagged”	
with	an	extra	bit	to	force	the	
stored	word	to	have	even	
parity:

• Each	word,	as	it	is	read	from	
memory	is	“checked”	by	
finding	its	parity	(including	
the	parity	bit).		

b7b6b5b4b3b2b1b0

+

b7b6b5b4b3b2b1b0			p

+
c• Minimum	Hamming	distance	of	parity	code	is	2

• A	non-zero	parity	check	indicates	an	error	occurred:
– 2	errors	(on	different	bits) are	not	detected
– nor	any	even	number	of	errors,	just	odd	numbers	of	errors	are	detected

18

p

Parity	Example

• Data	0101	0101
• 4	ones,	even	parity	now
• Write	to	memory:
0101	0101	0	
to	keep	parity	even

• Data	0101	0111
• 5	ones,	odd	parity	now
• Write	to	memory:
0101	0111	1
to	make	parity	even

• Read	from	memory
0101	0101	0

• 4	ones	=>	even	parity,	
so	no	error

• Read	from	memory
1101	0101	0

• 5	ones	=>	odd	parity,	
so	error

• What	if	error	in	parity	
bit?

19

Suppose	Want	to	Correct	1	Error?

• Richard	Hamming	came	up	with	simple	to	
understand	mapping	to	allow	Error	Correction	at	
minimum	distance	of	3
– Single	error	correction,	double	error	detection	

• Called	“Hamming	ECC”	
– Worked	weekends	on	relay	computer	with	unreliable	
card	reader,	frustrated	with	manual	restarting

– Got	interested	in	error	correction;	published	1950
– R.	W.	Hamming,	“Error	Detecting	and	Correcting	
Codes,”	The	Bell	System	Technical	Journal,	Vol.	XXVI,	
No	2	(April	1950)	pp 147-160.

20

Detecting/Correcting	Code	Concept

• Detection:	bit	pattern	fails	codeword	check
• Correction:	map	to	nearest	valid	code	word

Space	of	possible	bit	patterns	(2N)

Sparse	population	of	code	words	(2M <<	2N)	
- with	identifiable	signature

Error	changes	bit	pattern	to	
non-code	

21

Hamming	Distance:	8	code	words

22

Hamming	Distance	2:	Detection
Detect	Single	Bit	Errors

23

• No	1	bit	error	goes	to	another	valid	codeword
• ½	codewords are	valid

Invalid
Codewords

Hamming	Distance	3:	Correction
Correct	Single	Bit	Errors,	Detect	Double	Bit	Errors

24

•No	2	bit	error	goes	to	another	valid	codeword;	1	bit	error	near
• 1/4	codewords are	valid

Nearest	
000

(one	1)

Nearest	
111
(one	0)

Administrivia
• Final	Exam
– Tuesday,	June	21,	2016,	9:00-11:00
– Location:	H2	109	+	110
– THREE	cheat	sheets	(MT1,MT2,	post-MT2)

• Hand-written
• Project	3	will	still	come
– Short/	easy	– but:
– Competition:

• Slowest	33	percentile	and	below:	80%
• Fastest	program:	100%
• Linear	scaling	in	between.

– Time:	What	do	you	prefer?	1	week	only,	or	till	end	of	
exam	week?

25

Hamming	Error	Correction	Code

• Use	of	extra	parity	bits	to	allow	the	position	
identification	of	a	single	error

1. Mark	all	bit	positions	that	are	powers	of	2	as	
parity	bits	(positions	1,	2,	4,	8,	16,	 …)	
– Start	numbering	bits	at	1	at	left	(not	at	0	on	right)

2.	All	other	bit	positions	are data	bits
(positions	3,	5,	6,	7,	9,	10,	11,	12,	13,	14,	15, …)

3.	Each	data	bit	is	covered	by	2	or	more	parity	bits	

26

Hamming	ECC
4. The	position	of parity	bit	determines sequence	

of data	bits	that	it	checks
• Bit	1	(00012):	checks	bits	(1,3,5,7,9,11,...)
– Bits	with	least	significant	bit	of	address	=	1

• Bit	2	(00102):	checks		bits	(2,3,6,7,10,11,14,15,…)
– Bits	with	2nd least	significant	bit	of	address	=	1

• Bit	4	(01002):	checks	bits	(4-7,	12-15,	20-23,	...)
– Bits	with	3rd least	significant	bit	of	address	=	1	

• Bit	8	(10002):	checks	bits	(8-15,	24-31,	40-47	,...)
– Bits	with	4th least	significant	bit	of	address	=	1	

27

Graphic	of	Hamming	Code

• http://en.wikipedia.org/wiki/Hamming_code

28

Hamming	ECC
5.	Set parity	bits	to	create	even	parity for	each	
group

• A	byte	of	data:	10011010
• Create	the coded	word,	leaving	spaces	for	the	
parity	bits:

• _	_	1	_	0	0	1	_	1	0	1	0
0	0	0	0	0	0	0	0	0	1	1	1
1	2	3	4	5	6	7	8	9	0	1	2

• Calculate	the	parity	bits
29

Hamming	ECC
• Position	1	checks	bits	1,3,5,7,9,11	 (bold):	
? _	1 _	0 0	1 _	1 0	1 0.	set	position	1	to	a _:	
_ _	1 _	0 0	1 _	1 0	1 0	

• Position	2	checks	bits	2,3,6,7,10,11	 (bold):
0	?	1	_	0	0	1 _	1	0	1 0.	set	position	2	to	a _:	
0	_ 1 _	0	0	1 _	1	0	1 0	

• Position	4	checks	bits	4,5,6,7,12	 (bold):
0	1	1	?	0	0	1 _	1	0	1	0.	set	position	4	to	a _:	
0	1	1 _ 0	0	1	_	1	0	1	0

• Position	8	checks	bits	8,9,10,11,12:
0	1	1	1	0	0	1	?	1	0	1	0.	set	position	8	to	a	_:	
0	1	1	1	0	0	1	_ 1	0	1	0

30

Hamming	ECC
• Position	1	checks	bits	1,3,5,7,9,11:	
? _	1 _	0 0	1 _	1 0	1 0.	set	position	1	to	a	0:
0 _	1 _	0 0	1 _	1 0	1 0	

• Position	2	checks	bits	2,3,6,7,10,11:
0	?	1	_	0	0	1 _	1	0	1 0.	set	position	2	to	a	1:
0	1 1 _	0	0	1 _	1	0	1 0	

• Position	4	checks	bits	4,5,6,7,12:
0	1	1	?	0	0	1 _	1	0	1	0.	set	position	4	to	a	1:
0	1	1	1 0	0	1	_	1	0	1	0

• Position	8	checks	bits	8,9,10,11,12:
0	1	1	1	0	0	1	?	1	0	1	0.	set	position	8	to	a	0:	
0	1	1	1	0	0	1	0 1	0	1	0

31

Hamming	ECC
• Final	code	word:	011100101010
• Data	word:	 1			001		1010

32

Hamming	ECC	Error	Check

• Suppose	receive	
011100101110

0 1 1 1 0 0 1 0 1 1 1 0

33

Hamming	ECC	Error	Check

• Suppose	receive	
011100101110

34

Hamming	ECC	Error	Check

• Suppose	receive	
011100101110
0 1 0 1 1 1 √
11 01 11 X-Parity	2	in	error

1001 0 √
01110 X-Parity	8	in	error

• Implies	position	8+2=10	is	in	error
011100101110

35

Hamming	ECC	Error	Correct

• Flip	the	incorrect	bit	…
011100101010

36

Hamming	ECC	Error	Correct

• Suppose	receive	
011100101010
0 1 0 1 1 1 √
11 01 01 √

1001 0 √
01010 √

37

Hamming	Error	Correcting	Code
• Overhead	involved	in	single	error-correction	code
• Let	p be total	number	of	parity	bits	and d number	of	data	
bits	in p +	d bit	word

• If	p error	correction	bits	are	to	point	to error	bit	(p +	d cases)
+	indicate	that	no	error	exists	(1	case),	we	need:

2p >=	p +	d +	1,
thus	p >=	log(p +	d +	1)
for	large	d,	p approaches	log(d)

• 8	bits	data	=> d =	8,	2p =	p +	8	+	1	=>	p =	4
• 16	data	=>	5	parity,	
32	data	=>	6	parity,	
64	data	=>	7	parity

38

Hamming	Single-Error	Correction,	
Double-Error	Detection	(SEC/DED)

• Adding extra	parity	bit	covering	the	entire	word provides	
double	error	detection	as	well	as	single	error	correction
1 2 3				4 5				6				7			8
p1 p2 d1 p3 d2 d3 d4			p4

• Hamming	parity	bits H (p1 p2 p3)	are	computed	(even	parity	as	
usual)	plus	the even	parity	over	the	entire	word, p4:
H=0 p4=0,	no	error
H≠0	p4=1,	correctable	single	error	(odd	parity	if	1	error	=>	
p4=1)
H≠0	p4=0, double	error	occurred	(even	parity	if	2	errors=>	
p4=0)
H=0 p4=1, single	error	occurred	in	p4bit,	not	in	rest	of	word

Typical	modern	codes	in	DRAM	memory	systems:
64-bit	data	blocks	(8	bytes)	with	72-bit	code	words	(9	bytes).

39

Hamming	Single	
Error	Correction	
+	Double	
Error	Detection

40

1	bit	error	(one	1)
Nearest	0000

1	bit	error	(one	0)
Nearest	1111

2	bit	error	
(two	0s,	two	1s)

Halfway	
Between	Both	

Hamming	Distance	=	4

What	if	More	Than	2-Bit	Errors?

• Network	transmissions,	disks,	distributed	
storage		common	failure	mode	is	bursts	of	bit	
errors,	not	just	one	or	two	bit	errors
– Contiguous	sequence	of	B bits	in	which	first,	last	and	any	
number	of	intermediate	bits	are	in	error

– Caused	by	impulse	noise	or	by	fading	in	wireless
– Effect	is	greater	at	higher	data	rates

41

Cyclic	Redundancy	Check

42

Simple	example:	Parity	Check	Block

10011010
01101100
11110000
00101101
11011100
00111100
11111100
00001100

00111011

Data

Check

00000000 0	=	Check!

10011010
01101100
11110000
00000000
11011100
00111100
11111100
00001100

00111011
00101101 Not	0	=	Fail!

Cyclic	Redundancy	Check
• Parity	codes	not	powerful	enough	to	detect	long	runs	
of	errors	(also	known	as	burst	errors)

• Better	Alternative:	Reed-Solomon	Codes
– Used	widely	in	CDs,	DVDs,	Magnetic	Disks
– RS(255,223)	with	8-bit	symbols:	each	codeword contains	
255	code	word	bytes	(223	bytes	are	data	and	32	bytes	are	
parity)

– For	this	code:	n	=	255,	k	=	223,	s	=	8,	2t	=	32,	t	=	16
– Decoder	can	correct	any	errors	in	up	to	16	bytes	anywhere	
in	the	codeword

43

Cyclic	Redundancy	Check
11010011101100 000 <--- input right padded by 3 bits
1011 <--- divisor
01100011101100 000 <--- result
1011 <--- divisor
00111011101100 000

1011
00010111101100 000

1011
00000001101100 000 <--- skip leading zeros

1011
00000000110100 000

1011
00000000011000 000

1011
00000000001110 000

1011
00000000000101 000

101 1

00000000000000 100 <--- remainder

44

14	data	bits 3	check	bits 17	bits	total

3	bit	CRC	using	 the
polynomial	 x3 +	x	+	1
(divide	by	1011	to	get	remainder)

Cyclic	Redundancy	Check

• For	block	of	k bits,	transmitter	generates	an	
n-k bit	frame	check	sequence

• Transmits	n bits	exactly	divisible	by	some	number
• Receiver	divides	frame	by	that	number
– If	no	remainder,	assume	no	error
– Easy	to	calculate	division	for	some	binary	numbers	with	
shift	register

• Disks	detect	and	correct	blocks	of	512	bytes	with	
called	Reed	Solomon	codes	≈	CRC

45

(In	More	Depth:	Code	Types)
• Linear	Codes:

Code	is	generated	by	G	and	in	null-space of	H
• Hamming	Codes:	Design	the	H	matrix		

– d =	3	Þ Columns	nonzero,	Distinct
– d =	4Þ Columns	nonzero,	Distinct,	Odd-weight

• Reed-solomon codes:
– Based	on	polynomials	in	GF(2k)	(I.e.	k-bit	symbols)
– Data	as	coefficients,	code	space	as	values	of	polynomial:
– P(x)=a0+a1x1+…	ak-1xk-1
– Coded:	P(0),P(1),P(2)….,P(n-1)
– Can	recover	polynomial	as	long	as	get	any k of	n
– Alternatively:	as	long	as	no	more	than	n-k coded	symbols	

erased,	can	recover	data.
• Side	note:	Multiplication	by	constant	in	GF(2k)	can	be	

represented	by	k ḱ matrix:	a×x
– Decompose	unknown	vector	into	k bits:	x=x0+2x1+…+2k-1xk-1
– Each	column	is	result	of	multiplying	a	by	2i

This image This image

46

Hamming	ECC	on	your	own
• Test	if	these	Hamming-code	words	are	correct.	
If	one	is	incorrect,	indicate	the	correct	code	
word.	Also,	indicate	what	the	original	data	
was.	

• 110101100011	
• 111110001100	
• 000010001010	

47

Evolution	of	the	Disk	Drive

48IBM	RAMAC	305,	1956

IBM	3390K,	1986

Apple	SCSI,	1986

Can	smaller	disks	be	used		to	close	gap	in	
performance	between	disks	and	CPUs?

Arrays	of	Small	Disks

49

14”
10”5.25”3.5”

3.5”

Disk	Array:			
1	disk	design

Conventional:																	
4	disk		designs

Low	End High	End

Replace	Small	Number	of	Large	Disks	with	Large	Number	of	
Small	Disks!	(1988	Disks)

50

Capacity	
Volume	
Power
Data	Rate	
I/O	Rate			
MTTF		
Cost

IBM	3390K
20	GBytes
97	cu.	ft.
3	KW
15	MB/s
600	I/Os/s
250	KHrs
$250K

IBM	3.5"	0061
320	MBytes
0.1	cu.	ft.
11	W
1.5	MB/s
55	I/Os/s
50	KHrs
$2K

x70
23	GBytes
11	cu.	ft.
1	KW
120	MB/s
3900	IOs/s
???	Hrs
$150K

Disk	Arrays	have	potential	for	large	data	and	I/O	rates,	high	
MB	per	cu.	ft.,	high	MB	per	KW,	but	what	about	reliability?

9X
3X

8X

6X

RAID:	Redundant	Arrays	of	
(Inexpensive)	Disks

• Files	are	"striped"	across	multiple	disks
• Redundancy	yields	high	data	availability
– Availability:	service	still	provided	to	user,	even	if	
some	components	failed

• Disks	will	still	fail
• Contents	reconstructed	from	data			
redundantly	stored	in	the	array
=>	Capacity	penalty	to	store	redundant	info
=>	Bandwidth	penalty	to	update	redundant	info

51

Redundant	Arrays	of	Inexpensive	Disks
RAID	1:	Disk	Mirroring/Shadowing

52

• Each	disk	is	fully	duplicated	onto	its	“mirror”
Very	high	availability	can	be	achieved

•	Bandwidth	sacrifice	on	write:
Logical	write	=	two	physical	writes
Reads	may	be	optimized

•	Most	expensive	solution:	100%	capacity	overhead

recovery
group

Redundant	Array	of	Inexpensive	Disks	
RAID	3:	Parity	Disk

53

P

10010011
11001101
10010011
.	.	.

logical	record 1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

1
0
1
0
0
0
1
1

1
1
0
0
1
1
0
1

P	contains	sum	of
other	disks	per	stripe	
mod	2	(“parity”)
If	disk	fails,	subtract	
P	from	sum	of	other	
disks	to	find	missing	information

Striped	physical
records

Redundant	Arrays	of	Inexpensive	Disks	
RAID	4:	High	I/O	Rate	Parity

D0 D1 D2 D3 P

D4 D5 D6 PD7

D8 D9 PD10 D11

D12 PD13 D14 D15

PD16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk	Columns

Increasing
Logical
Disk
Address

Stripe

Insides	of	5	
disks

Example:	
small	read	D0	
&	D5, large	
write	D12-
D15

54

Inspiration	for	RAID	5
• RAID	4	works	well	for	small	reads
• Small	writes	(write	to	one	disk):	
– Option	1:	read	other	data	disks,	create	new	sum	and	
write	to	Parity	Disk

– Option	2:	since	P	has	old	sum,	compare	old	data	to	
new	data,	add	the	difference	to	P

• Small	writes	are	limited	by	Parity	Disk:	Write	to	
D0,	D5	both	also	write	to	P	disk	

55

D0 D1 D2 D3 P

D4 D5 D6 PD7

RAID	5:	High	I/O	Rate	Interleaved	Parity

56

Independent	
writes
possible	
because	of
interleaved	
parity

D0 D1 D2 D3 P

D4 D5 D6 P D7

D8 D9 P D10 D11

D12 P D13 D14 D15

P D16 D17 D18 D19

D20 D21 D22 D23 P
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
Disk	Columns

Increasing
Logical
Disk	
Addresses

Example:	
write	to	D0,	
D5	uses	disks	
0,	1,	3,	4

Problems	of	Disk	Arrays: Small	Writes

D0 D1 D2 D3 PD0'

+

+

D0' D1 D2 D3 P'

new
data

old
data

old	
parity

XOR

XOR

(1.	Read) (2.	Read)

(3.	Write) (4.	Write)

RAID-5:	Small	Write	Algorithm

1	Logical	Write	=	2	Physical	Reads	+	2		Physical	Writes

57

And,	in	Conclusion,	…
• Great	Idea:	Redundancy	to	Get	Dependability
– Spatial	(extra	hardware)	and	Temporal	(retry	if	error)

• Reliability:	MTTF	&	Annualized	Failure	Rate	(AFR)
• Availability:	%	uptime	(MTTF-MTTR/MTTF)
• Memory
– Hamming	distance	2:	Parity	for	Single	Error	Detect
– Hamming	distance	3:	Single	Error	Correction	Code	+	
encode	bit	position	of	error

• Treat	disks	like	memory,	except	you	know	when	a	disk	
has	failed—erasure	makes	parity	an	Error	Correcting	
Code

• RAID-2,	-3,	-4,	-5:	Interleaved	data	and	parity

58

