CS 110

Computer Architecture
Lecture 26:

Course Summary

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
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Old Machine Structures

Application (ex: browser)

Circuit Design

transistors




New-School Machine Structures
(It’s a bit more compllcated')

Software Hardware
Parallel Requests

Assigned to computer

Warehouse &
Scale &

e.g., Search “Katz” Computer §
Leverage
Parallel Threads 5 icjicm &
Assigned to core Achieve High
e.g., Lookup, Ads Performance

Parallel Instructions
>1 instruction @ one time
e.g., 5 pipelined instructions
Parallel Data
>1 data item @ one time
e.g., Add of 4 pairs of words
Hardware descriptions

All gates functioning in
parallel at same time

ProgrammingLanguages P D . Project 2

/ Core

Function:

s B 7 Logic Gates




CA is NOT about C Programming

e |t's about the hardware-softwareinterface

— What does the programmer need to know to
achieve the highest possible performance

* Languages like C are closer to the underlying
hardware, unlike languages like Python!

— Allows us to talk about key hardware features in
higher level terms

— Allows programmer to explicitly harness
underlying hardware parallelism for high
performance: “programming for performance”



Great Ideas in Computer Architecture

Design for Moore’s Law
Abstraction to Simplify Design
Make the Common Case Fast
Dependability via Redundancy
Memory Hierarchy

o s W ihPE

Performance via
Parallelism/Pipelining/Prediction



Powers of Ten inspired CA Overview

* Going Top Down cover 3 Views
1. Architecture (when possible)
2. Physical Implementation of that architecture

3. Programming system for that architecture
and implementation (when possible)

e See http://www.powersofl10.com/film
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104 meters

Google’s Oregon WSC
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Google Warehouse

90 meters by 75 meters, 10 Megawatts
Contains 40,000 servers, 190,000 disks
Power Utilization Effectiveness: 1.23

— 85% of 0.23 overhead goes to cooling losses

— 15% of 0.23 overhead goes to power losses

Contains 45, 40-foot long containers
— 8 feet x 9.5 feet x 40 feet

30 stacked as double layer, 15 as single layer



100 meters

Containers in WSCs

102 meters
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10° meters

Google Contam

2 longrows, each with 29
racks

Coolingbelow raised floor

10 meters

Hot air returned behind
racks
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Equipment Inside a Container

_—

Server (in rack
format):

Array (aka cluster):
server racks + larger local
area network switch

7 foot Rack: servers + Ethernet local ) o,

area network switch in middle (“rack ("array switch”) 10X
o faster => cost 100X: cost

switch”) FN?)
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Google rack with 20
servers + Network Switch
in the middle

48-port 1 Gigabit/sec
Ethernet switch every
other rack

Array switches connect to
racks via multiple 1 Gbit/s
links

2 datacenter routers
connect to array switches
over 10 Gbit/s links
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Great Ideas in Computer Architecture

1. Design for Moore’s Law
-- WSC, Container, Rack

2. Abstraction to Simplify Design
3. Make the Common Case Fast

4. Dependability via Redundancy
-- Multiple WSCs, Multiple Racks, Multiple Switches
5. Memory Hierarchy

6. Performance via
Parallelism/Pipelining/Prediction

-- Task level Parallelism, Data Level Parallelism
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101 meters

Google Server Internals




Google Board Details

e Supplies only 12 volts

* Battery per board vs.
large battery room

— Improves PUE: 99.99%
efficient local battery vs
94% for battery room

e 2 SATA Disk Drives
— 1 Terabyte capacity each
— 3.5 inch disk drive
— 7200 RPM

e 2 AMD Opteron
Microprocessors
— Dual Core, 2.2 GHz

8 DIMMs
— 8 GB DDR2 DRAM

1 Gbit/sec Ethernet
Network Interface Card
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Programming Multicore
Microprocessor: OpenMP

#include <omp.h>
#tinclude <stdio.h>
static long num_steps = 100000;
int value[num_steps];
int reduce()
{ inti; intsum=0;
#pragma omp parallel for private(x) reduction(+:sum)
for (i=1; i<= num_steps; i++){
sum = sum + valueli];

}

24



Great Ideas in Computer Architecture

1.

ik W

Design for Moore’s Law

-- More transistors = Multicore + SIMD
Abstraction to Simplify Design

Make the Common Case Fast
Dependability via Redundancy

Memory Hierarchy
-- More transistors = Cache Memories

Performance via Parallelism/Pipelining/
Prediction

-- Thread-level Parallelism
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AMD Opteron Microprocessor
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AMD Opteron Microarchitecture

> Branch
prediction

Instruction cache

'

Instruction prefetch
and decode

{

RISC-operation queue

'

Dispatch and register remaining

|

¥

Register file

I

Integer and floating-point operation queue

Integer

ALU.
Multiplier

Integer
ALU

Floating
Integer point
ALU Adder
/SSE

Floating

Load/Store queue

Data
cache

Commit
unit
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AMD Opteron Pipeline Flow

* Forinteger operations

Number of
clock cycles

Decode
and
translate

Instruction
Fetch
2

3

RISC-operation

queue

>
>

Reorder
buffer
allocation +
register
renaming

2

Reorder
buffer

—_—

Y

— 12 stages (Floating Pointis 17 stages)

— Up to 106 RISC-ops in progress

Scheduling
+ dispatch
unit

2

ﬂ-

1

Data Cache/
Commit

2
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AMD Opteron Block Diagram

Branch
Prediction

Fetch

Scan/Align/Decode
Fastpath Microcode Engine

! ! ! ! ! !

pops
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millimeters

AMD Opteron Core

103 meters
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Programming One Core:
C with Intrinsics

void mmult(int n, float *A, float *B, float *C)
{
for(inti=0;i<n;i+=4)
for(intj=0;j<n;j++)
{
~ _m128 cO=_mm_load_ps(C+i+j*n);
for(intk=0; k< n; k++)

cO=_mm_add_ps(cO, _mm_mul_ps(_mm_load ps(A+i+k*n),
_mm_loadl ps(B+k+j*n)));

_mm_store_ps(C+i+j*n, c0);
}
}



Inner loop from gcc -0 -S
Assembly snippet from innermost loop:

movaps (%rax), %xmm9
mulps %xmmO0, %xmm9
addps %xmm9, %xmm8
movaps 16(%rax), %xmm9
mulps %xmmO0, %xmm9
addps %xmm9, %xmm?7
movaps 32(%rax), %xmm9
mulps %xmmO0, %xmm9
addps %xmm9, %xmm6
movaps 48(%rax), %xmm9
mulps %xmmO0, %xmm9
addps %xmm9, %xmmb5



Great Ideas in Computer Architecture

1. Design for Moore’s Law

2. Abstraction to Simplify Design
-- Instruction Set Architecture, Micro-operations

Make the Common Case Fast
Dependability via Redundancy
Memory Hierarchy

Performance via
Parallelism/Pipelining/Prediction
-- Instruction-level Parallelism (superscalar, pipelining)
-- Data-level Parallelism

O AW
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SIMD Adder

Four 32-bit adders that
operate in parallel
— Data Level Parallelism
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One 32-bit Adder

00000000 -

00000000 -

r000000059m5

00000000 -
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1 bit of 32-bit Adder




Complementary MOS Transistors
(NMOS and PMOQOS) of NAND Gate

T

NAND gate

R =

ov —

X y y4
O volts O volts |3 volts
O volts 3 volts |3 volts
3volts 3volts |0 volts
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10”7 meters
Scanning Electron Microscope

100 nanometers

Top View

Cross Section
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10® meters

Block Diagram of Static RAM
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Final Output

Hamming Decoder
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1 Bit SRAM In 6 Transistors
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100 nanometers

107 meters

Physical Layout of SRAM Bit

43



100 nanometers

SRAM Cross Section

107 meters



DIMM Module

* DDR = Double Data Rate
— Transfers bits on Falling AND Rising Clock Edge
* Has Single Error Correcting, Double Error
Detecting Redundancy (SEC/DED)
— 72 bits to store 64 bits of data

— Uses “Chip kill” organization so that if single
DRAM chip fails can still detect failure

* Average server has 22,000 correctable errors
and 1 uncorrectable error per year



10° meters

DRAM Bits
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DRAM Cell in Transistors

word line

FET

E_ cell

‘ capacitor
Vcc/2

hit line
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Physical Layout of DRAM Bit

Capacitor

M, word

Diffused
bit line

Polysilicon

Polysilicon plate

gate



100 nanometers

107 meters

Cross Seltion of DRAM Bits
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AMD Dependability

e L1 cache data is SEC/DED protected
e |2 cache and tags are SEC/DED protected
e DRAM is SEC/DED protected with chipkill

e On-chip and off-chip ECC protected arrays include
autonomous, background hardware scrubbers

e Remaining arrays are parity protected
— Instruction cache, tags and TLBs
— Data tags and TLBs

— Generally read only data that can be recovered
from lower levels




Programming Memory Hierarchy:
Cache Blocked Algorithm

* The blocked version of the i-j-k algorithm is written
simply as (A,B,C are submatricies of a, b, c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)
for (k=0;k<N/r;k++)
C[i][j] += A[i] [k]*B[k][j]

— r = block (sub-matrix) size (Assume r divides N)

— X[i][j] = a sub-matrix of X, defined by block row i and
block columnj



Great Ideas in Computer Architecture

1.

5.

6.

Design for Moore’s Law

-- Higher capacities caches and DRAM
Abstraction to Simplify Design
Make the Common Case Fast
Dependability via Redundancy

-- Parity, SEC/DEC

Memory Hierarchy
-- Caches, TLBs

Performance via Parallelism/Pipelining/Prediction
-- Data-level Parallelism
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Course Summary

* Asthe field changes, Computer Architecure
courses change, too!

e |tis still about the software-hardware
interface

— Programming for performance!

— Parallelism: Task-, Thread-, Instruction-, and Data-
MapReduce, OpenMP, C, SSE instrinsics

— Understanding the memory hierarchy and its
impact on application performance

* Interviewers ask what you did this semester!




Administrivia

* Final Exam
— Tuesday, June 21, 2016, 9:00-11:00
— Location: H2 109 + 110
— THREE cheat sheets (MT1,MT2, post-MT?2)
* Hand-written

* Project 3 will still come

— Short/ easy — but:
— Competition:
* Slowest 33 percentileand below: 80%

* Fastest program: 100%
e Linearscalingin between.

— Worth only half points compared to P1.1, P1.2, P2.1, P2.2
— Time: Till end of exam week.



Thanks to the TAs!

Xu Qingwen #RIEZE

Zhao Yanpeng i&X Z il
Dong Yanbing = fi It
Wu Minye 5 5-1E

Jin Shi 4A

Zhu Chen K /=
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