
Computer Architecture I Final
Tuesday, June 21 2016

Computer Architecture I Final

Chinese Name:

Pinyin Name:

E-Mail ... @shanghaitech.edu.cn:

Question Points Score

1 22

2 14

3 20

4 10

5 8

6 10

7 16

Total: 100

• This test contains 9 numbered pages, including the cover page. The back of each page is
blank and can be used for scratch-work, but will not be looked at for grading.

• Put your pinyin name on the top of every page.

• Please turn off all cell phones, smartwatches, and other mobile devices. Remove all hats and
headphones. Put everything in your backpack. Place your backpacks, laptops and jackets
under your seat.

• You have 75 minutes to complete this exam. The exam is closed book; no computers, phones,
or calculators are allowed. You may use three A4 pages (front and back) of handwritten notes
in addition to the provided green sheet.

• The estimated time needed for each of the topics is given in parenthesis. The total estimated
time is 75 minutes.

• There may be partial credit for incomplete answers; write as much of the solution as you
can. We will deduct points if your solution is far more complicated than necessary. When
we provide a blank, please fit your answer within the space provided.

• Answer all questions in English. Answers in Chinese get 50% of the score deducted.



Name: Final, Page 2 of 9 Computer Architecture I 2016

1. SDS and Pipline (20 minutes)

The following sub-questions will use the circuit shown in Figure 1 below.

Figure 1

Circuit specs:

• 15ns clk-to-Q time

• Negligible hold time

• 20 ns logical gate propagation delay

• Gates with bubbles on the output have the same delay as ”normal” gates

• Assume that X and Y arrive at the positive edge of the clock

(a)6 Given Circuit A, with a clock period of 100ns, determine the maximum theoretical setup
time we can have for this circuit to satisfy register-timing constraints (and function cor-
rectly). With this setup time, if signals X and Y are undefined until t = 0, when would
Out1 be stable with the correct computed value?

Max setup time:

Out1 stable at t=

(b)8 Now, you need to pipeline the circuit to improve the clock period. Draw a star on any
wire in Figure 1 where you would place a pipelining register. You may place up
to 3 registers (but you may not need all 3). Your solution may introduce a cycle delay,
but should not change the sequence of outputs after that initial delay (assuming the circuit
gets a single uninterrupted stream of incoming X and Y values). Write a short explanation
below:



Name: Final, Page 3 of 9 Computer Architecture I 2016

(c)8 Now, assume we have a Pipelined 5-stage MIPS CPU with the following specs:

• The CPU stalls on hazards, there is no forwarding
• Branch comparison happens in stage 2 and we DO NOT have a branch delay slot.

(i.e. the branch ”decision” is clocked into the PC at the end of stage 2).
• Both memory and registers CAN be written and read in the same clock cycle
• All Loads and Stores hit in the cache (ie. loads/stores take one cycle in the Mem

stage)

Fill in the corresponding pipeline stages (F, D, E, M, W) at the appropriate times in the
table below for the following 8 MIPS instructions assuming the above properties of your
CPU. Suppose that any branches in the code are not taken for this specific instance. (You
should use the back of the page for scratch work).

Instr\Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
sll $v1 $v1 8 F D E M W

xor $v0 $a1 $a2
addu $a1 $s3 $t1
andi $v0 $v0 1

addu $t0 $a0 $t1
lw $s0 0($t0)

bne $s0 $0 end
j taketwo

Here is a second table for you in case you want to correct the above table. Clearly mark
which table you want to be scored!

Instr\Cycle 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
sll $v1 $v1 8 F D E M W

xor $v0 $a1 $a2
addu $a1 $s3 $t1
andi $v0 $v0 1

addu $t0 $a0 $t1
lw $s0 0($t0)

bne $s0 $0 end
j taketwo



Name: Final, Page 4 of 9 Computer Architecture I 2016

2. Control and Datapath (14 minutes)

Modify the following single cycle MIPS datapath diagram to accomodate a new instruction
swai (store word then auto-increment). The operation performs the regular sw operation, then
post-increments the rs register by 1. Your modification may use simple adders, mux chips,
wires, and new control signals. You may replace original labels where necessary. Recall the
RTL for sw is: Mem[R[rs] + SignExt[imm16]] = R[rt]; PC = PC + 4, & that sw (and
swai) has the following fields:

Opcode Rs Rt Immediate

Figure 2: Datapath

(a)10 Modify the picture above and list your changes below. You may not need all lines. Write
them in ”pipeline stage order” (i.e., changes affecting IF first, MEM next, etc.)
(A)

(B)

(C)

(D)

(E)

(F)

(b)4 We also wish to do the same thing with lw, namely create lwai. Will this work? Please
argue your point in one sentence.



Name: Final, Page 5 of 9 Computer Architecture I 2016

3. MIPS Mystery (14 minutes)

We present mystery, a new helper routine for your C programming.
In parts (a) and (b), you’ll show us you know how to use mystery form C.
In parts (c) and (d), you’ll show us you understand its limitations.

mystery: ori $v0 $0 0x0
beq $a0 $0 done
la $t0 mystery
lw $t1 0($t0)
addiu $t1 $t1 0x1
sw $t1 0($t0)
lw $v0 0($a0)

done: jr $ra

main() {
char A[4], char4 = ’4’;
int pi[] = {3, 4, 1, 5, 1};
float float4 = 4;

// part(a)
// more code, ...

}

(a)2 If you are at “part (a)” in the C code, show a single call to mystery so that it returns 4.
printf("Here is mystery returning four...%d\n", mystery(

));

(b)6 Complete the documentation of mystery for a fellow programmer. Use good abstraction–
don’t tell the user how it does what it does, just tell them what it does and how it’s to be
used.
“When called with a non-NULL argument, the subroutine mystery...

”
“When called with NULL argument, the subroutine mystery...

”
“Overall, mystery is a subroutine used to ...

”

(c)2 We’d like to know if there is a limit to the # of times mystery can be called with a
NULL argument (so that it still does what you described in part b). If there is , state what
the limit is and what happens if it’s called one more time. If there isn’t a limit, write N/A
(not applicable) in both blanks.
“With a NULL argument, mystery may be called at most times,
Calling it once more...

”



Name: Final, Page 6 of 9 Computer Architecture I 2016

(d)2 We’d like to know if there is a limit to the # of times mystery can be called with a
non-NULL argument (so that it still does what you described in part b). If there is, state
what the limit is and what happens if it’s called one more time. If there isn’t a limit, write
N/A (not applicable) in both blanks.
“With a non-NULL argument, mysterymay be called at most times,
Calling it once more...

”

(e)4 Translate the following assembly into machine code.
Instruction Code

xor $s0,$s0,$s0

(f)4 What is the difference between ’jr’, ’jal’ and ’j’ ?

4. C Programming (10 minutes)

(a)4 Write C Code in One Line. Complete the following C function according to comments.
You may assume that the architecture on which this code is run uses two’s complement
to represent signed integers. Zero points if you use if/else or ?/:. Suggestion: Use
parentheses to explicitly denote the order of operations.

/*
* Returns an unsigned integer whose first IDX low order bits are

* the same as that in LO , and whose remaining high order bits

* are the same as that of HI. Assume 0 <= IDX < sizeof ( int ).

*/
unsigned splice ( unsigned lo , unsigned hi , int idx ) {

return ______________________________________________________;
}



Name: Final, Page 7 of 9 Computer Architecture I 2016

(b)6 Thread Level Paralielism. Consider each of the following code segments and determine
which of the following statements is true about the correctness/performance of the given
code, and a brief explanation of one or two sentences is a must. Assume the default num-
ber of threads is greater than 1 and no thread will complete before another thread starts
executing.

1. Sometimes incorrect
2. Always incorrect
3. Slower than serial
4. Faster than serial

(a) Set all elements in arr to 0.

int i;
#pragma omp parallel for
for (i = 0; i < len; i++) {

arr[i] = 0;
}

(b) Set element i of arr to i.

#pragma omp parallel
for (int i = 0; i < len; i++) {

arr[i] = i;
}

(c) Set arr to be an array of Fibonacci numbers.

arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (int i = 2; i < len; i++) {

arr[i] = arr[i - 1] + arr[i - 2];
}



Name: Final, Page 8 of 9 Computer Architecture I 2016

5. Cache (5 minutes)
This C code runs on a 32-bit MIPS machine with 4 GiB of memory and a single L1 cache.
Vectors A and B live in different places of memory, are of equal size (n is a power of 2 and
a [natural number] multiple of the cache size), block aligned. The size of the cache is C, a
power of 2 (and always bigger than the block size, obviously).

// sizeof(uint8_t) = 1 byte (12Ish)
swapLeft (uint8_t *A, uint8_t *B, int n) {
uint8_t tmp; // assume the compiler will use a register for tmp
for (int i = 0; i < n; ++i)
{

tmp = A[i];
A[i] = B[i];
B[i] = tmp;

}
}

(a)4 If the cache is direct mapped and the best hit:miss ratio is ”H:1”, what is the block size in
bytes?

(a)

(b)4 Assuming a block size of 64 bytes, a cache size of 64KiB and a value for n of 65,536
and that we have just finished filling array B with values and no other processes are being
executed. In the optimal case, how many cache misses must we have (i.e.: what is the
lowest number of cache misses we can have)?

(b)

6. Virtual Memory (8 minutes)
For the following question, assume that the machine in question has the following parameters:

• 64-bit virtual addresses

• 48 bit physical addresses

• 4KiB pages

• Fully associative TLB with 128 entries and LRU replacement

• Unlimited swap space

(a)2 How much physical memory can the machine support at most (in KiB, MiB, GiB or TiB)?

(a)

(b)2 What is the maximum number of pages that a process can use (use of power of two is
ok)?

(b)



Name: Final, Page 9 of 9 Computer Architecture I 2016

(c)2 How many bytes of main memory can be at maximum covered by the TLB (in KiB, MiB,
GiB or TiB)?

(c)

(d)4 Given the program below, and assuming that the text and data segment are continuos and
have a size of less than 2KiB, how much memory will the execution of this program need?
Why?

#include <list>
int main(){
std::list<int> li;
li.push_back(3);
return li.size();

}

(d)

7. T/F Questions (Circle one. If the circling is unclear, you will receive no credit.) (4 minutes)

(a)2 Exceptions in early pipeline stages override exceptions in later stages for a given instruc-
tion. (True / False)

(b)2 Exceptions are handled in the pipeline stage where they occur. (True / False)

(c)2 CPUs need separate instructions to access I/O devices. (True / False)

(d)2 Segmentation (base + bound) has fragmentation problems. (True / False)

(e)2 RAID: Availability will be increased by increasing MTTF (True / False)

(f)2 RAID: Availability will be increased by decreasing MTTR (True / False)

(g)2 RAID: Availability will be increased by Redundant data copies (True / False)

(h)2 RAID: Availability will be increased by using RAID 0 instead of RAID 1 (True / False)


