
CS	110
Computer	Architecture	

Lecture	2:	Introduction	to	C,	Part	I

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• Compile	vs.	Interpret
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

2

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

3

Two’s-Complement	Examples

• Assume	for	simplicity	4	bit	width,	-8	to	+7	
represented

4

0011
0010

3
+2
5 0101

0011
1110

3
+	(-2)

1 1	0001

0111
0001

7
+1
-8 1000
Overflow!

1101
1110

-3
+	(-2)

-5 1	1011

1000
1111

-8
+	(-1)
+7 1	0111

Carry	into	MSB	=	
Carry	Out	MSB

Carry	into	MSB	=	
Carry	Out	MSB

Overflow!

Overflow	when	
magnitude	of	result	
too	big	to	fit	into	
result	representation

Carry	in	=	carry	from	less	significant	bits
Carry	out	=	carry	to	more	significant	bits

0	to	+31

-16	to	+15

-32	to	+31☐

☐

☐

☐

5

Suppose	we	had	a	5-bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

0	to	+31

-16	to	+15

-32	to	+31☐

☐

☐

☐

6

Suppose	we	had	a	5	bit	word.	What	
integers	can	be	represented	in	two’s	
complement?

ENIAC	(U.Penn.,	1946)
First Electronic	General-Purpose	Computer

7

• Blazingly	fast	(multiply	in	2.8ms!)
– 10	decimal	digits	x	10	decimal	digits

• But	needed	2-3	days	to	setup	new	program,	as	
programmed	with	patch	cords	and	switches

EDSAC	(Cambridge,	1949)
First General	Stored-Program	Computer

8

• Programs	held	as	numbers	in	memory
• 35-bit	binary	2’s	complement	words

But	actually: first	working	programmable,	fully	
automatic	digital	computer:	Zuse Z3	(Germany	1941)

9

Processor

Control

Datapath

Components	of	a	Computer

10

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Great	Idea:	Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

11

We	are	here!

Introduction	to	C
“The	Universal	Assembly	Language”

12

Intro	to	C
• C	is	not	a	“very	high-level”	language,	nor	a	
“big”	one,	and	is	not	specialized	to	any	
particular	area	of	application.	But	its	absence	
of	restrictions	and	its	generality	make	it	more	
convenient	and	effective	for	many	tasks	than	
supposedly	more	powerful	languages.

– Kernighan	and	Ritchie
• Enabled	first	operating	system	not	written	in	
assembly	language:	UNIX	- A	portable	OS!

13

Intro	to	C

• Why	C?:	we	can	write	programs	that	allow	us	
to	exploit	underlying	features	of	the	
architecture	– memory	management,	special	
instructions,	parallelism

• C	and	derivatives	(C++/Obj-C/C#)	still	one	of	
the	most	popular	application	programming	
languages	after	>40	years!

14

TIOBE	Index	of	Language	Popularity

15http://www.tiobe.com

The	ratings	are	based	on	the	number	of	skilled	engineers	world-wide,	courses	and	third	
party	vendors.		

16

TIOBE	Programming	Community	Index

17

Disclaimer

• You	will	not	learn	how	to	fully	code	in	C	in	
these	lectures!	You’ll	still	need	your	C	
reference	for	this	course
– K&R	is	a	must-have
• Check	online	for	more	sources

• Key	C	concepts:	Pointers,	Arrays,	Implications	
for	Memory	management

• We	will	use	ANSI	C89	– original	”old	school”	C

18

Compilation:	Overview
• C	compilers	map	C	programs	into	architecture-
specific	machine	code	(string	of	1s	and	0s)
– Unlike	Java,	which	converts	to	architecture-
independent	bytecode

– Unlike	Python	environments,	which	interpret	the	code
– These	differ	mainly	in	exactly	when	your	program	is	
converted	to	low-level	machine	instructions	(“levels	of	
interpretation”)

– For	C,	generally	a	two	part	process	of	compiling	.c files	
to	.o files,	then	linking	the	.o files	into	executables;		

– Assembling	is	also	done	(but	is	hidden,	i.e.,	done	
automatically,	by	default);	we’ll	talk	about	that	later

19

C	Compilation	Simplified	Overview
(more	later	in	course)

20

foo.c bar.c

Compiler Compiler

foo.o bar.o

Linker lib.o

a.out

C	source	files	(text)

Machine	code	object	files

Pre-built	object	
file	libraries

Machine	code	executable	file

Compiler/assembler	
combined	here

Compilation:	Advantages

• Excellent	run-time	performance:	generally	
much	faster	than	Scheme	or	Java	for	
comparable	code	(because	it	optimizes	for	a	
given	architecture)

• Reasonable	compilation	time:	enhancements	
in	compilation	procedure	(Makefiles)	allow	
only	modified	files	to	be	recompiled

21

Compilation:	Disadvantages
• Compiled	files,	including	the	executable,	are	
architecture-specific,	depending	on	processor	
type	(e.g.,	MIPS	vs.	RISC-V)	and	the	operating	
system	(e.g.,	Windows	vs.	Linux)

• Executable	must	be	rebuilt	on	each	new	system
– I.e.,	“porting	your	code”	to	a	new	architecture

• “Change	® Compile	® Run	[repeat]”	iteration	
cycle	can	be	slow	during	development
– but	Make	tool	only	rebuilds	changed	pieces,	and	can	
do	compiles	in	parallel	(linker	is	sequential	though	->	
Amdahl’s	Law)

22

C	Pre-Processor	(CPP)

• C	source	files	first	pass	through	macro	processor,	CPP,	before	
compiler	sees	code

• CPP	replaces	comments	with	a	single	space
• CPP	commands	begin	with	“#”
• #include	“file.h”	/*	Inserts	file.h into	output	*/
• #include	<stdio.h>	/*	Looks	for	file	in	standard	location	*/
• #define	M_PI	(3.14159)	/*	Define	constant	*/
• #if/#endif /*	Conditional	inclusion	of	text	*/
• Use	–save-temps	option	to	gcc to	see	result	of	preprocessing
• Full	documentation	at:	http://gcc.gnu.org/onlinedocs/cpp/

23

foo.c CPP foo.i Compiler

Typed	Variables	in	C
int variable1 = 2;
float variable2 = 1.618;

char variable3 = 'A';

• Must	declare	the	type	of	
data	a	variable	will	hold
– Types	can't	change

24

Type Description Examples
int integer	numbers,	including	negatives 0,	78,	-1400
unsigned	int integer	numbers	(no	negatives) 0,	46,	900
long larger	signed	integer -6,000,000,000
char single	text	character	or	symbol 'a',	'D',	'?’
float floating	point	decimal	numbers 0.0,	1.618,	-1.4
double greater	precision/big	FP	number 10E100

Integers:	Python	vs.	Java	vs.	C

• C:	int should	be	integer	type	that	target	
processor	works	with	most	efficiently

• Only	guarantee:	sizeof(long long)	
≥	sizeof(long)	≥	sizeof(int)	≥		sizeof(short)
– Also,	short >=	16	bits,	long >=	32	bits
– All	could	be	64	bits 25

Language sizeof(int)
Python >=32	bits	(plain	ints),	infinite (long	ints)
Java 32	bits
C Depends	on	computer;	16 or	32	or	64

Consts and	Enums in	C
• Constant	is	assigned	a	typed	value	once	in	the	declaration;

value	can't	change	during	entire	execution	of	program
const float golden_ratio = 1.618;
const int days_in_week = 7;

• You	can	have	a	constant	version	of	any	of	the	standard	C	
variable	types

• Enums:	a	group	of	related	integer	constants.		Ex:
enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};
enum color {RED, GREEN, BLUE};

26

B:	Can	assign	to	“PI”	but	not	“pi”	

C:	Code	runs	at	same	speed	using	“PI”	or	“pi”

A:	Constants	“PI”	and	“pi”	have	same	type

27

Compare	“#define PI 3.14”	and
“const float pi=3.14”	– which	is	true?

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

28

Administrivia
• Find	a	partner	for	the	lab	and	send	your	
selection	to	Xu	Qingwen (xuqw)	– due	Friday,	
11am!	(Submissions	after	that	loose	25%	of	Lab	
1	score!	Write	an	email	if	you	cannot	find	a	
partner!)

• Labs	start	next	week!	Check	your	schedule!	You	
cannot	get	checked	without	a	partner!

• The	tasks	for	Lab	1	will	be	posted	on	the	website	
today.	Prepare	for	it	over	the	weekend.

• HW1	will	be	posted	today.	Ask	questions	about	
it	on	piazza.	Or	get	help	during	the	lab	or	during	
OH.	

29

Agenda

• Compile	vs.	Interpret
• C	vs.	Java	vs.	Python	
• Administrivia
• Quick	Start	Introduction	to	C
• News/Technology	Break
• Pointers
• And	in	Conclusion,	…

30

Typed	Functions	in	C

int number_of_people ()
{
return 3;

}

float dollars_and_cents ()
{
return 10.33;

}

int sum (int x, int y)
{

return x + y;
}

• You	have	to	declare	the	type	of	
data	you	plan	to	return	from	a	
function

• Return	type	can	be	any	C	
variable	type,	and	is	placed	to	
the	left	of	the	function	name

• You	can	also	specify	the	return	
type	as	void
– Just	think	of	this	as	saying	that	no	value	

will	be	returned
• Also	necessary	to	declare	types	

for	values	passed	into	a	function
• Variables	and	functions	MUST	be	

declared	before	they	are	used

31

Structs in	C
• Structs are	structured	groups	of	

variables,	e.g.,	

typedef struct {
int length_in_seconds;
int year_recorded;

} Song;

Song song1;

song1.length_in_seconds = 213;
song1.year_recorded = 1994;

Song song2;

song2.length_in_seconds = 248;
song2.year_recorded = 1988;

32

Dot	notation:	x.y = value

A	First	C	Program:	Hello	World
Original C:

main()
{
printf("\nHello World\n");

}

ANSI Standard C:

#include <stdio.h>

int main(void)
{
printf("\nHello World\n");
return 0;

}

33

C	Syntax:	main

• When	C	program	starts
– C	executable	a.out is	loaded	into	memory	by	
operating	system	(OS)

– OS	sets	up	stack,	then	calls	into	C	runtime	library,
– Runtime	1st initializes	memory	and	other	libraries,
– then	calls	your	procedure	named	main	()

• We’ll	see	how	to	retrieve	command-line	
arguments	in	main()	later…

34

