CS 110
Computer Architecture

Lecture 3: Introduction to C, Part Il

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Agenda

* C Syntax
* Pointers
* C Memory Management

A First C Program: Hello World

Original C: ANSI Standard C:

main ()
{

printf ("\nHello World\n") ; int main (void)
} {

#include <stdio.h>

printf ("\nHello World\n") ;
return O;

C Syntax: main

* When C program starts

— C executable a.out is loaded into memory by
operating system (OS)

— OS sets up stack, then calls into C runtime library,
— Runtime 1%t initializes memory and other libraries,
— then calls your procedure named main ()

e We'll see how to retrieve command-line
arguments in main() later...

A Second C Program:
Compute Table of Sines

#include <stdio.h>
#include <math.h>

int main (void)

{
int angle degree;
double angle radian, pi, value;
/* Print a header */

printf ("\nCompute a table of the
sine function\n\n") ;

/* obtain pi once for all * /
/* or just use pi = M PI, where */
/* M PI is defined in math.h * /
pi = 4.0*atan(1.0);

printf ("Value of PI = %f \n\n",
pi);

}

printf ("angle Sine \n");

angle degree = 0;

/* initial angle value */

/* scan over angle */

while (angle degree <= 360)

/* loop until angle degree > 360 */

{
angle radian = pi*angle degree/180.0;
value = sin(angle_ radian);
printf (" %3d $f \n ",
angle_degree, value);

angle degree = angle degree + 10;
/* increment the loop index */

}

return 0;

Compute a table of the sine Second C Program

function
value of PI = 3.141593 Sample Output
angle Sine

| 0-009999 190 ~0.173648

10 0.173648
200 ~0.342020

20 0.342020
210 ~0.500000

30 0.500000
40 0.642788 220 -0.642788
50 0.766044 230 -0.766044
' 240 -0.866025

60 0.866025
250 ~0.939693

70 0.939693
260 -0.984808

80 0.984808
270 ~1.000000

90 1.000000
280 ~0.984808

100 0.984808
290 ~0.939693

110 0.939693
120 0.866025 300 -0.866025
130 0.766044 310 -0.766044
140 0. 642788 320 -0.642788
' 330 ~0.500000

150 0.500000
160 0.342020 340 -0.342020
350 -0.173648

170 0.173648
180 0.000000 360 -0.000000

C Syntax: Variable Declarations

* Allvariable declarations must appear before they
are used (e.g., at the beginning of the block)

* Avariable may be initialized in its declaration;
if not, it holds garbage!

* Examples of declarations:
— Correct: {

int a 0, b = 10;

—Incorrect: for (int i = 0; i < 10; i++)

}

Newer C standards are more flexible about this, more later
7

C Syntax : Control Flow (1/2)

Within a function, remarkably close to Java
constructs in terms of control flow
— 1f-else
* if (expression) statement
* if (expression) statementl
else statement2
—while
* while (expression)
statement
* do
statement
while (expression);

C Syntax : Control Flow (2/2)

— for
* for (initialize; check; update)
statement
—switch
* switch (expression) {
case constl: statements
case const2: statements
default: statements

}

* break

C Syntax: True or False

* What evaluates to FALSE in C?
— 0 (integer)
— NULL (a special kind of pointer: more on this later)
— No explicit Boolean type

e What evaluates to TRUE in C?

— Anything that isn’t false is true

— Same idea as in Python: only Os or empty
sequences are false, anything else is true!

C operators

arithmetic: +, -, *, /, % * subexpression

assighment: = grouping: ()

augmented assignment: ° order relations: <, <=, >,

+=, =, *=, [=, %=, &=, >=

|=, M=, <<=, >>= * increment and

vitwise logic: ~, &, |, decrement: ++ and --

vitwise shifts: <<, >> * member selection: ., ->

voolean logic: |, &&, || ¢ conditional evaluation:
PAE

equality testing: ==, I=

Address vs. Value

* Consider memory to be a single huge array
— Each cell of the array has an address associated
with it
— Each cell also stores some value

— For addresses do we use signed or unsigned
numbers? Negative address?!

* Don’t confuse the address referring to a
memory location with the value stored there

101 102 103 104 105 ...
23 42

Pointers

* An address refers to a particular memory
location; e.g., it points to a memory location

e Pointer: A variable that contains the address
of a variable

Location (address) /—\

101 102 103 104 105 ...

23 42 104

7 y i
name

Pointer Syntax

e int *x;
— Tells compiler that variable x is address of an int
* X = &Yy
— Tells compiler to assign address of y to x
— & called the “address operator” in this context
* Z = *X;
— Tells compiler to assign value at address in x to z
— * called the “dereference operator” in this context

14

Creating and Using Pointers

* How to create a pointer:
& operator: get address of a variable

int *p, x;

X 3;

p = &x;

P

P

P

? X ?
? X 3
X 3

e How get a value pointed to?
“*” (dereference operator): get the value that the pointer points to

Note the “*” gets used
2 different ways in this
example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

printf (“p points to value %d\n”,*p);

15

Using Pointer for Writes

* How to change a variable pointed to?

— Use the dereference operator * on left of
assignment operator =

3

5

T3
T3

Pointers and Parameter Passing

e C passes parameters “by value”

— Procedure/function/method gets a copy of the
parameter, so changing the copy cannot change the
original

void add one (int x) {
X = x + 1;
}

int y = 3;
add one(y);

y remains equal to 3

17

Pointers and Parameter Passing

* How can we get a function to change the value
held in a variable?

void add_one (1nt *p) {

}
int y = 3; What would you use in C++7?
add one(&y); Call by reference:
void add_one (int &p) {
y is now equal to 4 p=p+1;, //or p+=1;

}

18

Types of Pointers

* Pointers are used to point to any kind of data
(int, char, a struct, etc.)

* Normally a pointer only points to one type
(int, char, a struct, etc.).
— void * is a type that can point to anything
(generic pointer)
— Use void * sparingly to help avoid program bugs,
and security issues, and other bad things!

More C Pointer Dangers

* Declaring a pointer just allocates space to hold
the pointer — it does not allocate the thing
being pointed to!

* Local variables in C are not initialized, they
may contain anything (aka “garbage”)

 What does the following code do?

void £ ()

{
int *ptr;
*ptr = 5;

Pointers and Structures

typedef struct { /* dot notation */
int x; int h = pl.x;
int y; p2.y = pl.y;
} Point;
/* arrow notation */
Point pl; int h = paddr->x;
Point p2; int h = (*paddr) .x;

Point *paddr;
/* This works too */
pl = p2;

Note: C structure assignment is not a "deep copy”.
All members are copied, but not things pointed to
by members.

Pointers in C

* Why use pointers?

— If we want to pass a large struct or array, it’s easier /
faster / etc. to pass a pointer than the whole thing

— In general, pointers allow cleaner, more compact code

 So what are the drawbacks?

— Pointers are probably the single largest source of bugs
in C, so be careful anytime you deal with them

* Most problematic with dynamic memory management—
coming up next week

* Dangling references and memory leaks

Why Pointers in C?

At time C was invented (early 1970s), compilers
often didn’t produce efficient code

— Computers 25,000 times faster today, compilers better

C designed to let programmer say what they want
code to do without compiler getting in way

— Even give compilers hints which registers to use!

Today’s compilers produce much better code, so
may hot need to use pointers in application code

Low-level system code still needs low-level access
via pointers

Quiz: Pointers

void foo(int *x, int *y)
{ int t;
if (*x > *y) { t = *y; *y = *x; *x
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);

printf("a=%d b=%d c=%d\n", a, b, c);
A:a=3 b=2 c=1
B:a=1 b=2 c¢=3

Resultis: C:a=1 b=3 c=2
D:a=3 b=3 c¢c=3
E:a=1 b=1 c=1

Administrivia

* OH started — use when you need help!
* Questions regarding HW1?

25

P

one?7/ Teardown
ifixit.com

26

Apple 64bit System on a chip (SoC):

guad core (2 high performance, 2 low power; only 2 at a time)

125 mm?, 3.3 billion transistors (including the GPU and caches)

2.34 GHz ARMVS8 TSMC 16 nm 6-core GPU 4 Samsung LPDDR4 RAM chips

T B
- g I

. 7l N7 i NS \
.B' . o - P
v o T 5 Y S v Y@
ol : - o
-4

f l.;]'[ll_][u_‘

20l s f it -
7 WM Do e s b adl
. x o — §tyvs .
ﬁ;ﬁj . T giifinin T 7
LEEE: = ; Z/ PR CCALACLIAR I LATA4AS .
/
1
v |

Apple A10 Fusion APL1W24 SoC + Samsung
2 GB LPDDR4 RAM (as denoted by the
markings K3RG1G10CM-YGCH)

Qualcomm MDM9645M LTE Cat. 12 Modem
Skyworks 78100-20

e Avago AFEM-8065 Power Amplifier Module

® Avago AFEM-8055 Power Amplifier Module

And on the flip side:

SK Hynix H23QEG8VG2ACS 32 GB Flash
Murata 339500199 Wi-Fi/Bluetooth Module
NXP 67V04 NFC Controller

Dialog 338500225 Power Management IC
Qualcomm PMD9645 Power Management IC

Qualcomm WTR4905 Multimode LTE
Transceiver

Qualcomm WTR3925 RF Transceiver

28

=
-
' m
L H
-~

688

Even more chips:

® Bosch Sensortec BMP280 Barometric
Pressure Sensor

Apple/Cirrus Logic 338500105 Audio Codec
Cirrus Logic 338500220 Audio Amplifier(x2)
e Lattice Semiconductor ICE5LP4K

@ Skyworks 13702-20 Diversity Receive
Module

® Skyworks 13703-21 Diversity Receive
Module

e Skyworks 77363-1

29

= 01 0 30 0 0 3;

6100S68¢

8L v
887100-028 yy~"

Just a few ICs remain:

’

® Avago LF1626 200157

NXP 610A38
TDK EPCOS D5315
® Texas Instruments 62W8C7P

® Texas Instruments 65730A0P Power
Management IC

30

C Arrays

 Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};

declares and initializes a 2-element integer array

C Strings

e String in Cis just an array of characters
char string[] = "abec";

* How do you tell how long a string is?

— Last character is followed by a 0 byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] '= 0) n++;
return n;

Array Name / Pointer Duality

* Key Concept: Array variable is a “pointer” to the first
(0th) element

* So, array variables almost identical to pointers

— char *stringandchar string][] are nearly
identical declarations

— Differ in subtle ways: incrementing, declaration of filled
arrays

* Consequences:
— ar is an array variable, but works like a pointer
— ar[0] is the same as *ar
— ar[2] isthe same as * (ar+2)
— Can use pointer arithmetic to conveniently access arrays

Changing a Pointer Argument?

 What if want function to change a pointer?

 What gets printed?

void inc_ptr(int *p)
{ p= p+1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

A.q.*
[l

g9

50

50

60

70

Pointer to a Pointer

e Solution! Pass a pointer to a pointer, declared

as **h

* Now what gets printed?

void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;

inc_ptr(&q);

printf(“*q = %d\n”, *q);

*q = 60
Ad 9
L
50 | 60 | 70

C Arrays are Very Primitive

 An array in C does not know its own length,
and its bounds are not checked!

— Consequence: We can accidentally access off the
end of an array

— Consequence: We must pass the array and its size
to any procedure that is going to manipulate it
* Segmentation faults and bus errors:

— These are VERY difficult to find;
be careful!

Use Defined Constants

* Array size n; want to access from 0 to n-1, so you should use

counter AND utilize a variable for declaration & incrementation
— Bad pattern

int i, ar[10];

for(i1i = 0; 1 < 10; 1+4+){ ... }
— Better pattern

const int ARRAY SIZE = 10;

int i, a[ARRAY SIZE];

for(i = 0; i < ARRAY SIZE; i++){ ... }

* SINGLE SOURCE OF TRUTH

— You're utilizing indirection and avoiding maintaining two copies of the
number 10

— DRY: “Don’t Repeat Yourself”

37

Pointing to Different Size Objects

* Modern machines are “byte-addressable”

— Hardware’s memory composed of 8-bit storage cells, each has a
unique address

* A Cpointer is just abstracted memory address

* Type declaration tells compiler how many bytes to fetch on
each access through pointer
— E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

short *y int *x char *z

59 58 57 56455 54 53 52 51 50 49 4847 46 45 44 43/42 Byte address

l—'—’ \ | L'J
' .
16-bit short stored 32-bit integer 8-bit character

in two bytes stored in four bytes stored in one byte
38

sizeof() operator

sizeof(type) returns number of bytes in object

— But number of bits in a byte is not standardized

* |In olden times, when dragons roamed the earth, bytes
could be 5, 6, 7, 9 bits long

By definition, sizeof(char)==1
Can take sizeof(arr), or sizeof(structtype)

We’ll see more of sizeof when we look at
dynamic memory management

Pointer Arithmetic

pointer + number pointer — number
e.g., pointer+ 1 adds 1 something to a pointer

char *p; int *p;
char a int a
char b; int b;
p = &a; In each, p now pointsto b p = &a;
P += 1; <«1— (Assuming compiler doesn’t —TP += 1;

reorder variables in memory.
Never code like this!!!!)

Adds 1*sizeof (char) Adds 1*sizeof (int)
to the memory address to the memory address

Pointer arithmetic should be used cautiously

Arrays and Pointers

Passing arrays:

Must explicitl
Really int *array pass thepsizey

* Array =~ pointer to the initial (Oth) array int A
element foo(int array][], f//
unsigned int size)

a[i] = * (a+i) (

.. array[size - 1] ..

* An array is passed to a function as a pointer

— The array size is lost! int
main (void)

{
* Usually bad style to interchange arrays and int a[10], b[5];
pointers .. foo(a, 10).. foo(b, 5) ..

— Avoid pointer arithmetic! }

41

Arrays and

Pointers

int
foo(int array][],

unsigned int size)

printf (“$d\n”, sizeof (array)); * |

int
main (void)
{
int a[10], b[5];

PN
. What does this print: 4

... because array is really

a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

. foo(a, 10).. foo(b, 5) .. | What does this print? 40

printf (“%d\n”, sizeof(a)); « |

42

