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Important Note...
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Summary: Single-cycle Processor

* Five steps to design a processor:
1.

Analyze instruction set -
datapath requirements

. Select set of datapath

components & establish
clock methodology

. Assemble datapath meeting

the requirements

Processor

Control

Datapath

Memory

Input

Output

. Analyze implementation of each instruction to determine

setting of control points that effects the register transfer.

. Assemble the control logic

* Formulate Logic Equations
* Design Circuits




Single Cycle Performance

e Assume time for actions are

— 100ps for register read or write; 200ps for other events

* Clock period is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time
read access write

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

S 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

* Clock rate (cycles/second = Hz) = 1/Period (seconds/cycle)




Single Cycle Performance

e Assume time for actions are

— 100ps for register read or write; 200ps for other events

* Clock period is?

Instr Instr fetch | Register | ALU op Memory | Register | Total time |
read access write

lw 200ps 100 ps 200ps 200ps 100 ps

S 200ps 100 ps 200ps 200ps 700ps

R-format | 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

* What can we do to improve clock rate?

* Will this improve performance as well?
Want increased clock rate to mean faster programs



Gotta Do Laundry
* Ann, Brian, Cathy, Dave

each have one load of clothes to {55555{5

wash, dry, fold, and put away
— Washer takes 30 minutes '

— Dryer takes 30 minutes

— “Folder” takes 30 minutes

— “Stasher” takes 30 minutes to put

clothes into drawers %
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Sequential Laundry
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* Sequential laundry takes
8 hours for 4 loads



>~ v QN

N~ 0 & O

Pipelined Laundry

3.5 hours for 4 loads!

6PM 7 8 9 10 11 12 1 2AM
| | . |
3030 30 30 30 30 30 Time

ST A

S W8 A

B 3 A

& F5 A

* Pipelined laundry takes
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Pipelining Lessons (1/2)
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Pipelining doesn’t help latency
of single task, it helps
throughput of entire workload

Multiple tasks operating
simultaneously using different
resources

Potential speedup = Number
pipe stages

Time to “fill” pipeline and time
to “drain” it reduces speedup:
2.3x (8/3.5) v. 4x (8/2) in this
example
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Plpellnmg Lessons (2/2)

6 PIM 8 * Suppose new Dryer
| _ Tinre " takes 20 minutes, new
=
30 30 30 30 30 30 30 Folder takes 20

minutes. How much
faster is pipeline?

* Pipeline rate limited by
slowest pipeline stage

* Unbalanced lengths of
pipe stages reduces
speedup
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Execution Steps in MIPS Datapath

1) IFtch: Instruction Fetch, Increment PC
2) Dcd: Instruction Decode, Read Registers

3) Exec:
Mem-ref: Calculate Address

Arith-log: Perform Operation

4) Mem:
Load: Read Data from Memory
Store: Write Data to Memory

5) WB: Write Data Back to Register
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Single Cycle Datapath
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1. Instruction 2 Decode/ 3. Execute 4. Memory 5. Write

Fetch Register Read Back
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Pipeline registers
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1. Instruction 2 Decode/ 3. Execute 4. Memory 5. Write
Fetch Register Read Back

* Need registers between stages
— To hold information produced in previous cycle
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More Detailed Pipeline

Y

>Add

IF/ID

ID/EX

Address

Instruction
memory

Instruction

Shift
left 2

A
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register

Read
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register 2
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Write
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data

Read
data 1
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EX/MEM
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result
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Write
data

Data
memory

Read
data

MEM/WB
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Iw

for Load, Store, ...

Instruction fetch

\ /

>Add

4 —>
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Instruction
memory

IF/ID

Y

ID/EX

Instruction

Shift
left 2

Read
" | register 1 Read
data 1
Read
register 2
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ID for Load, Store, ...

Iw

Instruction decode

Add
44—

IF/ID

ID/EX

Address

Instruction
memory
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Instruction

Shift
left 2

Read
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EX for Load

Read
data

Data
emory

MEM/WB

| " |
| Execution |
IF/ID ID/EX EX/MEM
——
Add » >
4 dgAdd
Shift result
left 2
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2 register 1 ea
£ data 1
= Read > .
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MEM for Load
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WB for Load — Oops!

rite back
IF/ID ID/EX EX/MEM MEM/WB
Add > >
4= A i
Shift
left 2
c
PC Address % Read
2 register 1 Read >
‘é data 1
= Read > ——
Instruction . ister 2 Read
memory g / ) Registers  Reaq > —@—>| Address data [
( Write data 2 o
regispér Data
rite memory
data
o | Write
o " | data
16 3 >
X . [ Sign- 32 L >
W T 7| extend
ister

number!
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Corrected Datapath for Load

Address

Instruction

memory

IF/ID

ID/EX EX/MEM MEM/WB
AddrAdﬁ >
Shift esu
left 2
c
-% » | Read Read
2 register 1
‘g 9 data 1
= Read =
register2 Read
I Registers Roaq @ Address data [
o | Write data 2
" | register Data
> Write memory
data
o Write
o data
Sign- - >
extend
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Pipelined Execution Representation
Time
IF i [EX [vEm]wB
IF i [eExX [veEm]wB
IF i Jex [meEmM]wB
IF i Jex [mem]wB
IF i Jex [meEm]wB

IF i [EX [vEm]wB

* Every instruction must take same number of
steps, so some stages will idle

— e.g. MEM stage for any arithmetic instruction
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Graphical Pipeline Diagrams
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1. Instruction 2. Decode/ 3. Execute T 4. Memory T 5. Write
Fetch Register Read Back

e Use datapath figure below to represent pipeline:
IF_[ID [EX [Mem]WB

1 1

15 Reg [T V& | Reg
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Graphical Pipeline Representation
RegFile: left half is write, right half is read

- e~ ) 5 =

- 0Da=<0

Load
Add

Store

Sub
Or

1$ |

_ Time (_cloc_k cy_cles_)

Reg
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Pipelining Performance (1/3)

* Use T_(“time between completion of
instructions”) to measure speedup
Tc,single—cycle

Number of stages

— Equality only achieved if stages are balanced
(i.e. take the same amount of time)

* |f not balanced, speedup is reduced

- Tc,pipelined =

* Speedup due to increased throughput
— Latency for each instruction does not decrease
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Pipelining Performance (2/3)

 Assume time for stages is

— 100ps for register read or write

— 200ps for other stages
Instr Instr Register | ALUop | Memory |Register | Total
fetch read access write time
W 200ps | 100ps | 200ps | 200ps | 100 ps -
S 200ps 100 ps 200ps 200ps 700ps
R-format | 200ps 100 ps 200ps 100 ps 600ps
beq 200ps 100 ps 200ps 500ps

 What is pipelined clock rate?

— Compare pipelined datapath with single-cycle datapath
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Pipelining Performance (3/3)

Single-cycle
T. =800 ps
f=1.25GHz

Pipelined
T. =200 ps
f=5GHz

Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Program
execution Ti
order

(in instructions)

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

200 ps 200 ps 200 ps 200 ps 200 ps

200 400 600 800 1000 1200 1400 1600 1800
Instruction Dat
fetch Reg| ALU acc?ezs Reg
800 ps nenctonlmeg| A | 2| g
Instruction
800 ps fetch
800 ps
200 400 600 800 1000 1200 1400
Instruction Data
fetchI Reg( ALU access Reg
200ps | "o | |Fea| AU | aoces |Re0
200 ps " |  [mea| A | 22 Ireg
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Question

Logic in some stages takes 200ps and in some
100ps. Clk-Q delay is 30ps and setup-time is
20ps. What is the maximum clock frequency at
which a pipelined design can operate?

* A: 10GHz

* B: 5GHz

* C.:6.7/GHz
* D:4.35GHz
* E:4GHz



Question

Which statement is false?

* A: Pipelining increases instruction throughput
* B: Pipelining increases instruction latency

* C: Pipelining increases clock frequency

* D: Pipelining decreases number of components



Pipelining Hazards

A hazard is a situation that prevents starting the
next instruction in the next clock cycle
1) Structural hazard

— A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard

— Data dependency between instructions

— Need to wait for previous instruction to complete
its data read/write

3) Control hazard
— Flow of execution depends on previous instruction

29



1. Structural Hazards

e Conflict for use of a resource

 MIPS pipeline with a single memory?
— Load/Store requires memory access for data

— Instruction fetch would have to stall for that cycle
e Causes a pipeline “bubble”

* Hence, pipelined datapaths require separate
instruction/data memories
— Separate L1 1S and L1 DS take care of this



Structural Hazard #1: Single Memory

>

Time (clock cycles)

Trying to
read same
memory
twice in same
lock cycle

15 |:

Load

- ek () O

Instr 1

Instr2;;§§ geg

Instr 3

Instra - [®H E]mr“g
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Structural Hazard #2: Registers (1/2)

Time (clock cycles)

>

|
n

1$ L : :
S |Load : . Can we read
t and write to
' linstr 1 : registers

ultaneéously

? Instr 2 Pf@
g Instr 3 HRes |
' YInstr 4 (I
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Structural Hazard #2: Registers (2/2)

e Two different solutions have been used:

1) Split RegFile access in two: Write during 15t half and
Read during 2"9 half of each clock cycle

 Possible because RegFile access is VERY fast
(takes less than half the time of ALU stage)

2) Build RegFile with independent read and write ports

* Conclusion: Read and Write to registers during
same clock cycle is okay

Structural hazards can always be removed by
adding hardware resources
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2. Data Hazards (1/2)

* Consider the following sequence of

instructions:

add $t0,
sub $t4,
and Stbh,
or St7,
Xor $t9,

Stl,
St0,
St0,
St0,
St0,

St2
St3
St6
5t8
St10

34
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2. Data Hazards (2/2)

Data-flow backwards in time are hazards

IF_{IDIR

Time (clock cycles)

add $t0,5t1,$t2

I$

d

Reg

sub $t4,$t0,$t3
and $t5,5t0,$t6

or $t7,5t0,5t8

xor $t9,5t0,$t10

[ 1s




Data Hazard Solution: Forwarding

e Forward result as soon as it is available
— OK that it’s not stored in RegFile yet

IF_:IDIRF: >x§MEM§ WB :
add $t0,$t1,9t2] 1 JExe] F)ed vs |- {is]

sub $t4,5t0,$t3  [1s [free]’

and $t5,5t0,$t6 I$ .?:Reg

or $t7,5t0,6t8 i 8 [

xor $t9,5t0,$t10
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« What c

Datapath for Forwarding (1/2)

nanges need to be made here?
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4 —
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Instruction
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Instruction

!

Read
register 1

Read

register 2
Registers

Write

register

Write

data

Read
data 1

Read
data 2

extend

Sign-

MEM/WB

ID/EX EX/MEM
A% it >
Shift Y
left 2
Zero > [~
ALU
ALU -
> — result o ®—>-| Address
/ Data
memory
_ | write
o data

Read
data

Y

\
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Datapath for Forwarding (2/2)

 Handled by forwarding unit

i

Registers

ID/EX

ForwardA

Y YV Y
xec=g ) xXc=s )
)

g
 / Y

EX/MEM

MEM/WB

ALU—>

Data

memory

ForwardB

Yy
xc = )

EX/MEM.RegisterRd

MEM/WB.RegisterRd
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Data Hazard: Loads (1/4)

e Recall: Dataflow backwards in time are
hazards

IF

lw $t0,0($t1)| 1

sub $t3,5t0,$t2

e Can’t solve all cases with forwarding

— Must stall instruction dependent on load, then
forward (more hardware)

39



Data Hazard: Loads (2/4)

e Hardware stalls pipeline

— Called “hardware interlock”
i IF_{ID/RFi NEX i MEM: WB

Schematically, this is what
we want, but in reality stalls
done “horizontally”

Reg|:

lw $t0, 0(5t1) 1$
sub $t3,5t0,5t2

and $t5,5t0,$t4

éHowt:o
or $t7,$t0,$t6 istall just @,’

I

E

ipart of
‘pipeline?




Data Hazard: Loads (3/4)

* Stalled instruction converted to “bubble”, acts like nop

w310, 0(3t1) I3 J:Reg__%

3| D$

sub ; t2 I$ .EfRe :

: ble

Reg |:

Reg |

1 ble

“oub M bub ¥ bub

le

sub $t3,5t0,$t2. . 7]
and $15,$t0,$t4 /

First two pipe
or $t7s$t0,$tstages stall by

repeating stage
one cycle later

| 18 1

5D$

Reg
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Data Hazard: Loads (4/4)

* Slot after a load is called a load delay slot

— If that instruction uses the result of the load, then
the hardware interlock will stall it for one cycle

— Letting the hardware stall the instruction in the
delay slot is equivalent to putting an explicit nop

in the slot (except the latter uses more code
space)

* ldea: Let the compiler put an unrelated
instruction in that slot =2 no stall!

42



Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in the
next instruction!

MIPS code for D=A+B; E=A+C;

# Method 1: # Method 2:
lw Stl, 0(St0) 1w S$tl1, 0(St0)

Stalll————— @ RO
add $t3, Stl G2

sw  St3, (St0)

@ 8 (5t0) ¥
Stall!—>
add $t5, S$t1, @

sw $t5, 16(St0) W sw  S5t5, 16(5t0)
13 cycles 11 cycles
43




3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
* Still working on ID stage of branch

 BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until branch condition resolved

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)



T~ 5 -

- 0Da=0

Stall => 2 Bubbles/Clocks

Time (clock cycles)

1$ |

beq

Instr 1

Instr 2

Instr 3

YInstr 4

Reg

Where do we do the Ecom]f)are for the branch?




Control Hazard: Branching

* Optimization #1.:
— Insert special branch comparator in Stage 2
— As soon as instruction is decoded (Opcode

identifies it as a branch), immediately make a
decision and set the new value of the PC

— Benefit: since branch is complete in Stage 2, only
one unnecessary instruction is fetched, so only
onhe no-op is needed

— Side Note: means that branches are idle in Stages
3,4and5



One Clock Cycle Stall

Time (clock cycles)

1$ |

beq

Instr 1

) D

Instr 2

Instr 3

YInstr 4

- 0a=0

Branch com:para:tor moved to Decode s:tage.:




Control Hazards: Branching

* Option 2: Predict outcome of a branch, fix up
if guess wrong

— Must cancel all instructions in pipeline that
depended on guess that was wrong

— This is called “flushing” the pipeline

* Simplest hardware if we predict that all
branches are NOT taken
— Why?



Control Hazards: Branching

* Option #3: Redefine branches

— Old definition: if we take the branch, none of the
instructions after the branch get executed by accident

— New definition: whether or not we take the branch,
the single instruction immediately following the
branch gets executed (the branch-delay slot)

* Delayed Branch means we always execute inst
after branch

* This optimization is used with MIPS



Example: Nondelayed vs. Delayed Branch

Nondelayed Branch

or $8, $9,
add S1, S2,

sub $4, S5,

xor $10, S1,

Exit:

$10

$3
$6

 beq $1, $4, Exit

S11

Delayed Branch

add S$1,

sub $4,

beq $1,

or S8,

$2,853
$5, $6
$4, Exit

$9, §10

xor $10, $1, S$11

Exit:



Control Hazards: Branching

* Notes on Branch-Delay Slot

— Worst-Case Scenario: put a nop in the branch-
delay slot

— Better Case: place some instruction preceding the
branch in the branch-delay slot—as long as the
changed doesn’t affect the logic of program

e Re-ordering instructions is common way to speed up
programs

e Compiler usually finds such an instruction more than
70% of time

* Jumps also have a delay slot ...



Greater Instruction-Level Parallelism (ILP)

* Deeper pipeline (5 => 10 => 15 stages)
— Less work per stage => shorter clock cycle
 Multiple issue “superscalar”
— Replicate pipeline stages => multiple pipelines
— Start multiple instructions per clock cycle
— CPI < 1, so use Instructions Per Cycle (IPC)

— E.g., 4GHz 4-way multiple-issue
* 16 BIPS, peak CPI =0.25, peak IPC=4
— But dependencies reduce this in practice

e “Out-of-Order” execution

— Reorder instructions dynamically in hardware to
reduce impact of hazards
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3. Execute 4. Memo
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Duplicate all elements that hold the state (registers)

Use the same CL blocks

Use muxes to select which state to use every clock cycle

=>run 2 totally independent threads (same memory -> shared memory!)
Speedup?

— No obvious speedup — make use of CL blocks in case of unavailable resources (e.g. wait
for memory) 53



Intel Nehalem i7

* Hyperthreading:

About 5% die area

— Up to 30% speed gain

(BUT also < 0% possible)

* Pipeline: 20-24 stages!

e Qut-of-order execution

1.
2.
3.

Instruction fetch.
Instruction dispatch to an instruction queue

Instruction: Wait in queue until input
operands are available => instruction can

leave queue before earlier, older instructions.

The instruction is issued to the appropriate
functional unit and executed by that unit.

The results are queued.

Write to register only after all older
instructions have their results written.

quadruple associative Instruction Cache 32 KByte,
128-entry TLB-4K, 7 TLB-2/4M per thread

- 128 T
Prefetch Buffer (16 Bytes) Branch
Prediction
global/bimodal,
Predecode & loop, indirect
Instruction Length Decoder | | jmp
43113111 [
Instruction Queue
18 x86 Instructions
Alignment
MacroOp Fusion
Complex Simple Simple Simple
Decoder Decoder Decoder| Decoder|

Loop llll l «l Y
Stream Decoded Instruction Queue (28 pOP entries) Micro

Decoder l 1 l l Instruction

MicroOp Fusion | Sequencer

I
2X 4§ 1 1 3

Retirement | [ x Register Allocation Table (RAT)

Register
Reorder Buffer (128-entry) fused

| Reservation Station (128-entry) fused

Porn2 Pons onl

octuple associative Data Cache 32 KByte, |

64-entry TLB-4K, 32-entry TLB-2/4M

GTis: gigatransfers per second

Port4  Pont3 Port0
AGU neger/
| Store Store ) :
{| Dataf | agyr :
Unit

256




In Conclusion

Pipelining increases throughput by overlapping
execution of multiple instructions in different

pipestages
Pipestages should be balanced for highest clock rate
Three types of pipeline hazard limit performance

— Structural (always fixable with more hardware)

— Data (use interlocks or bypassing to resolve)
— Control (reduce impact with branch prediction or branch
delay slots)



