
CS	110
Computer	Architecture	

Thread-Level	Parallelism	(TLP)	
and	OpenMP Intro

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Review
• Amdahl’s	Law:	Serial	sections	limit	speedup
• Flynn	Taxonomy
• Intel	SSE	SIMD	Instructions
– Exploit	data-level	parallelism	in	loops
– One	instruction	fetch	that	operates	on	multiple	
operands	simultaneously

– 128-bit	XMM	registers
• SSE	Instructions	in	C
– Embed	the	SSE	machine	instructions	directly	into	C	
programs	through	use	of	intrinsics

– Achieve	efficiency	beyond	that	of	optimizing	compiler
2

New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
3

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Simple	Multiprocessor

4

Processor	0

Control

Datapath
PC

Registers
(ALU)

Memory
Input

Output

Bytes

I/O-Memory	Interfaces

Processor	0	
Memory	
Accesses

Processor	1

Control

Datapath
PC

Registers
(ALU)

Processor	1	
Memory	
Accesses

Multiprocessor	Execution	Model
• Each	processor	has	its	own	PC	and	executes	an	

independent	stream	of	instructions	(MIMD)
• Different	processors	can	access	the	same	memory	space

– Processors	can	communicate	via	shared	memory	by	
storing/loading	to/from	common	locations

• Two	ways	to	use	a	multiprocessor:
1. Deliver	high	throughput	for	independent	jobs	via	job-level	

parallelism
2. Improve	the	run	time	of	a	single	program	that	has	been	

specially	crafted	to	run	on	a	multiprocessor	- a	parallel-
processing	program

Use	term	core	for	processor	(“Multicore”)	because	
“Multiprocessor	Microprocessor”	too	redundant

5

Transition	to	Multicore

Sequential App
Performance

6

Parallelism	the	Only	Path	to	Higher	
Performance

• Sequential	processor	performance	not	expected	
to	increase	much,	and	might	go	down

• If	want	apps	with	more	capability,	have	to	
embrace	parallel	processing	(SIMD	and	MIMD)

• In	mobile	systems,	use	multiple	cores	and	GPUs
• In	warehouse-scale	computers,	use	multiple	
nodes,	and	all	the	MIMD/SIMD	capability	of	each	
node

7

Multiprocessors	and	You
• Only	path	to	performance	is	parallelism
– Clock	rates	flat	or	declining
– SIMD:	2X	width	every	3-4	years

• 256b	wide	now,	512b	Xeon	Processors,	1024b	in	2018?
– MIMD:	Add	2	cores	every	2	years:	2,	4,	6,	8,	10,	…

• Key	challenge	is	to	craft	parallel	programs	that	have	
high	performance	on	multiprocessors	as	the	number	of	
processors	increase	– i.e.,	that	scale
– Scheduling,	load	balancing,	time	for	synchronization,	
overhead	for	communication

• Project	3:	fastest	code	on	10-core	computer	(SIMD	and	
MIMD!)

8

Threads
• Thread:	a	sequential	flow	of	instructions	that	
performs	some	task

• Each	thread	has	a	PC	+	processor	registers and	
accesses	the	shared	memory

• Each	processor	provides	one	(or	more)	
hardware	threads	that	actively	execute	
instructions

• Operating	system	multiplexes	multiple	
software	threads	onto	the	available	hardware	
threads

9

Operating	System	Threads
Give	the	illusion	of	many	active	threads	by	time-
multiplexing	software	threads	onto	hardware	
threads

• Remove	a	software	thread	from	a	hardware	
thread	by	interrupting	its	execution	and	saving	its	
registers	and	PC	into	memory
– Also	if	one	thread	is	blocked	waiting	for	network	
access	or	user	input

• Can	make	a	different	software	thread	active	by	
loading	its	registers	into	a	hardware	thread’s	
registers	and	jumping	to	its	saved	PC

10

Hardware	Multithreading
• Basic	idea:	Processor	resources	are	expensive	and	
should	not	be	left	idle

• Long	memory	latency	to	memory	on	cache	miss?
• Hardware	switches	threads	to	bring	in	other	
useful	work	while	waiting	for	cache	miss

• Cost	of	thread	context	switch	must	be	much	less	
than	cache	miss	latency

• Put	in	redundant	hardware	so	don’t	have	to	save	
context	on	every	thread	switch:
– PC,	Registers

• Attractive	for	apps	with	abundant	TLP
– Commercial	multi-user	workloads

11

Hardware	Multithreading	
(aka	Hyperthreading)

12

Memory
Input

Output

Bytes

I/O-Memory	Interfaces

Processor	

Control

Datapath
PC	0

Registers	0

(ALU)

PC	1

Registers	1

• Two	copies	of	PC	and	Registers	
inside	processor	hardware
• Looks	like	two	processors	to	
software	(hardware	thread	0,	
hardware	thread	1)
• Control	logic	decides	which	thread	
to	execute	an	instruction	from	next

Multithreading	vs.	Multicore
• Multithreading	=>	Better	Utilization	
– ≈5%	more	hardware,	1.10X	better	performance?
– Share	integer	adders,	floating-point	units,	all	caches	
(L1	I$,	L1	D$,	L2$,	L3$),	Memory	Controller

• Multicore	=>	Duplicate	Processors
– ≈50%	more	hardware,	≈2X	better	performance?
– Share	outer	caches	(L2$,	L3$),	Memory	Controller

• Modern	machines	do	both
–Multiple	cores	with	multiple	threads per	core

13

Sören’s MacBook
• sysctl -a | grep hw\.
MacBookPro11,3
…
hw.physicalcpu:	4
hw.logicalcpu:	8
…
hw.cpufrequency =	
2,800,000,000		

hw.memsize =	17,179,869,184

hw.cachelinesize =	64
hw.l1icachesize:	32,768
hw.l1dcachesize:	32,768
hw.l2cachesize:	262,144
hw.l3cachesize:	6,291,456

on	Linux:
cat /proc/cpuinfo

14

Sören’s iPad	Air	2

Apple	A8X	processor:
• 3	cores!
• L1	$:	64KB	data,	64KB	
instruction

• L2	$:	2MB
• L3	$:	4MB
• Max	1.5GHz	clock
• 64bit	ARM	ISA
• 2	GB	RAM

Comparison:
iPad	Pro:	A9X	processor:
• Back	to	2	cores…
• L1	$:	64KB	data,	64KB	
instruction

• L2	$:	3MB
• No	L3	$:	double	
memory	bandwidth…

• 4	or	2	GB	RAM

15

Admin

• HW	6	due	on	Friday,	May	5	23:59:59	(May	6	
12am	on	gradescope)	–

• gradescope allows	late	submissions	till	May	9	
(slip	days)

• Upload	your	pdf	yourself	– stick	to	the	
template!

• HW	5	still	needs	some	time	– some	students	
submitted	”incorrect”	number	of	pages	–
gradescope doesn’t	support	this…

5/2/17 Fall	2013	-- Lecture	#15 16

100s	of	(Mostly	Dead)	
Parallel	Programming	Languages

17

ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join Oz
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALSA
APL E LabVIEW Scala
Axum Eiffel Limbo SISAL
Chapel Erlang Linda SR
Cilk Fortan 90 MultiLisp Stackless Python
Clean Go Modula-3 SuperPascal
Clojure Io Occam VHDL
Concurrent C Janus occam-π XC

OpenMP

• OpenMP	is	a	language	extension	used	for	
multi-threaded,	shared-memory	parallelism
– Compiler	Directives	(inserted	into	source	code)
– Runtime	Library	Routines	(called	from	your	code)
– Environment	Variables	(set	in	your	shell)

• Portable
• Standardized
• Easy	to	compile:	cc –fopenmp name.c

18

Shared	Memory	Model	with	Explicit	
Thread-based	Parallelism

• Multiple	threads	in	a	shared	memory	
environment,	explicit	programming	model	with	
full	programmer	control	over	parallelization

• Pros:
– Takes	advantage	of	shared	memory,	programmer	need	
not	worry	(that	much)	about	data	placement

– Compiler	directives	are	simple	and	easy	to	use
– Legacy	serial	code	does	not	need	to	be	rewritten

• Cons:
– Code	can	only	be	run	in	shared	memory	environments
– Compiler	must	support	OpenMP (e.g.	gcc 4.2)

19

OpenMP in	CS110

• OpenMP is	built	on	top	of	C,	so	you	don’t	have	to	
learn	a	whole	new	programming	language
– Make	sure	to	add		#include <omp.h>
– Compile	with	flag:		gcc -fopenmp

– Mostly	just	a	few	lines	of	code	to	learn
• You	will	NOT	become	experts	at	OpenMP
– Use	slides	as	reference,	will	learn	to	use	in	lab

• Key	ideas:
– Shared	vs.	Private	variables
– OpenMP directives	for	parallelization,	work	sharing,	
synchronization

20

OpenMP Programming	Model
• Fork	- Join	Model:

• OpenMP programs	begin	as	single	process	(master	thread)	
and	executes	sequentially	until	the	first	parallel	region	
construct	is	encountered
– FORK:		Master	thread	then	creates	a	team	of	parallel	threads
– Statements	in	program	that	are	enclosed	by	the	parallel	region	

construct	are	executed	in	parallel	among	the	various	threads
– JOIN: When	the	team	threads	complete	the	statements	in	the	

parallel	region	construct,	they	synchronize	and	terminate,	
leaving	only	the	master	thread

21

OpenMP	Extends	C	with	Pragmas	

• Pragmas are	a	preprocessor	mechanism	C	
provides	for	language	extensions

• Commonly	implemented	pragmas:	
structure	packing,	symbol	aliasing,	floating	
point	exception	modes	(not	covered)

• Good	mechanism	for	OpenMP	because	
compilers	that	don't	recognize	a	pragma	are	
supposed	to	ignore	them
– Runs	on	sequential	computer	even	with	
embedded	pragmas

22

parallel Pragma	and	Scope

• Basic	OpenMP construct	for	parallelization:
#pragma omp parallel
{

/* code goes here */
}
– Each thread	runs	a	copy	of	code	within	the	block
– Thread	scheduling	is	non-deterministic

• OpenMP default	is	shared variables
– To	make	private,	need	to	declare	with	pragma:
#pragma omp parallel private (x)

23

This	is	annoying,	but	curly	brace	MUST	go	on	separate	
line	from	#pragma

What	Kind	of	Threads?

• OpenMP	threads	are	operating	system	(software)	
threads.

• OS	will	multiplex	requested	OpenMP	threads	onto	
available	hardware	threads.

• Hopefully	each	gets	a	real	hardware	thread	to	run	
on,	so	no	OS-level	time-multiplexing.

• But	other	tasks	on	machine	can	also	use	hardware	
threads!

24

OMP_NUM_THREADS

• OpenMP intrinsic	to	set	number	of	threads:
omp_set_num_threads(x);

• OpenMP intrinsic	to	get	number	of	threads:
num_th = omp_get_num_threads();

• OpenMP	intrinsic	to	get	Thread	ID	number:
th_ID = omp_get_thread_num();

25

Parallel	Hello	World
#include <stdio.h>
#include <omp.h>
int main () {
int nthreads, tid;

/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num(); /* get thread id */
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0) {
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master and terminate */

}
26

Data	Races	and	Synchronization
• Two	memory	accesses	form	a	data	race	if	from	
different	threads	to	same	location,	and	at	least	
one	is	a	write,	and	they	occur	one	after	another

• If	there	is	a	data	race,	result	of	program	can	vary	
depending	on	chance	(which	thread	first?)

• Avoid	data	races	by	synchronizing	writing	and	
reading	to	get	deterministic	behavior

• Synchronization	done	by	user-level	routines	that	
rely	on	hardware	synchronization	instructions

• (more	later)

27

Analogy:	Buying	Milk

• Your	fridge	has	no	milk.	You	and	your	
roommate	will	return	from	classes	at	some	
point	and	check	the	fridge

• Whoever	gets	home	first	will	check	the	fridge,	
go	and	buy	milk,	and	return

• What	if	the	other	person	gets	back	while	the	
first	person	is	buying	milk?
– You’ve	just	bought	twice	as	much	milk	as	you	
need!

• It	would’ve	helped	to	have	left	a	note…
28

Lock	Synchronization	(1/2)

• Use	a	“Lock”	to	grant	access	to	a	region	
(critical	section)	so	that	only	one	thread	can	
operate	at	a	time
– Need	all	processors	to	be	able	to	access	the	lock,	
so	use	a	location	in	shared	memory	as	the	lock

• Processors	read	lock	and	either	wait	(if	locked)	
or	set	lock	and	go	into	critical	section
– 0means	lock	is	free	/	open	/	unlocked	/	lock	off
– 1means	lock	is	set	/	closed	/	locked	/	lock	on

29

Lock	Synchronization	(2/2)

• Pseudocode:

Check lock

Set the lock

Critical section

(e.g. change shared variables)

Unset the lock

30

Can	loop/idle	here
if	locked

Possible	Lock	Implementation

• Lock	(a.k.a.	busy	wait)
Get_lock: # $s0 -> addr of lock

addiu $t1,$zero,1 # t1 = Locked value

Loop: lw $t0,0($s0) # load lock

bne $t0,$zero,Loop # loop if locked

Lock: sw $t1,0($s0) # Unlocked, so lock

• Unlock
Unlock:

sw $zero,0($s0)

• Any	problems	with	this?
31

Possible	Lock	Problem

• Thread	1
addiu $t1,$zero,1

Loop: lw $t0,0($s0)

bne $t0,$zero,Loop

Lock: sw $t1,0($s0)

• Thread	2

addiu $t1,$zero,1

Loop: lw $t0,0($s0)

bne $t0,$zero,Loop

Lock: sw $t1,0($s0)

32

Time
Both	threads	think	they	have	set	the	lock!		

Exclusive	access	not	guaranteed!

Hardware	Synchronization

• Hardware	support	required	to	prevent	an	
interloper	(another	thread)	from	changing	the	
value	
– Atomic	read/write	memory	operation
– No	other	access	to	the	location	allowed	between	
the	read	and	write

• How	best	to	implement	in	software?
– Single	instr?		Atomic	swap	of	register	↔	memory
– Pair	of	instr?		One	for	read,	one	for	write

33

Synchronization	in	MIPS	

• Load	linked: ll rt,off(rs)
• Store	conditional: sc rt,off(rs)
– Returns	1 (success)	if	location	has	not	changed	
since	the	ll

– Returns	0 (failure)	if	location	has	changed

• Note	that	sc clobbers the	register	value	being	
stored	(rt)!
– Need	to	have	a	copy	elsewhere	if	you	plan	on	
repeating	on	failure	or	using	value	later

34

Synchronization	in	MIPS	Example

• Atomic	swap	(to	test/set	lock	variable)
Exchange	contents	of	register	and	memory:	
$s4	↔Mem($s1)

try: add $t0,$zero,$s4 #copy value
ll $t1,0($s1) #load linked
sc $t0,0($s1) #store conditional
beq $t0,$zero,try #loop if sc fails
add $s4,$zero,$t1 #load value in $s4

35

sc would	fail	if	another	threads	executes	sc here

Test-and-Set

• In	a	single	atomic	operation:
– Test	to	see	if	a	memory	location	is	set	
(contains	a	1)

– Set	it	(to	1)	if	it	isn’t	(it	contained	a	zero	
when	tested)

– Otherwise	indicate	that	the	Set	failed,	
so	the	program	can	try	again

– While	accessing,	no	other	instruction	
can	modify	the	memory	location,	
including	other	Test-and-Set	instructions

• Useful	for	implementing	lock	
operations

36

Test-and-Set	in	MIPS	

• Example: MIPS	sequence	for	
implementing	a	T&S	at	($s1)
Try: addiu $t0,$zero,1

ll $t1,0($s1)
bne $t1,$zero,Try
sc $t0,0($s1)
beq $t0,$zero,Try

Locked:

critical section

Unlock:
sw $zero,0($s1)

37

Idea	is	that	not	for	programmers	
to	use	this	directly,	but	as	a	tool	
for	enabling	implementation	of	
parallel	libraries

38

Question:		Consider	the	following	code	when	
executed	concurrently by	two	threads.

What	possible	values	can	result	in	*($s0)?

*($s0) = 100
lw $t0, 0($s0)
addi $t0, $t0,1
sw $t0, 0($s0)

A:	101	or	102
B:	100,	101,	or	102
C:	100	or	101

And	in	Conclusion,	…
• Sequential	software	is	slow	software
– SIMD	and	MIMD	only	path	to	higher	performance

• Multithreading	increases	utilization,	Multicore	
more	processors	(MIMD)

• OpenMP as	simple	parallel	extension	to	C
– Threads,	Parallel	for,	private,	critical	sections,	…	
– ≈	C:	small	so	easy	to	learn,	but	not	very	high	level	
and	it’s	easy	to	get	into	trouble

39

