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Review
• Amdahl’s	Law:	Serial	sections	limit	speedup
• Flynn	Taxonomy
• Intel	SSE	SIMD	Instructions
– Exploit	data-level	parallelism	in	loops
– One	instruction	fetch	that	operates	on	multiple	
operands	simultaneously

– 128-bit	XMM	registers
• SSE	Instructions	in	C
– Embed	the	SSE	machine	instructions	directly	into	C	
programs	through	use	of	intrinsics

– Achieve	efficiency	beyond	that	of	optimizing	compiler
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New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
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Simple	Multiprocessor
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Multiprocessor	Execution	Model
• Each	processor	has	its	own	PC	and	executes	an	

independent	stream	of	instructions	(MIMD)
• Different	processors	can	access	the	same	memory	space

– Processors	can	communicate	via	shared	memory	by	
storing/loading	to/from	common	locations

• Two	ways	to	use	a	multiprocessor:
1. Deliver	high	throughput	for	independent	jobs	via	job-level	

parallelism
2. Improve	the	run	time	of	a	single	program	that	has	been	

specially	crafted	to	run	on	a	multiprocessor	- a	parallel-
processing	program

Use	term	core	for	processor	(“Multicore”)	because	
“Multiprocessor	Microprocessor”	too	redundant
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Transition	to	Multicore

Sequential App 
Performance
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Parallelism	the	Only	Path	to	Higher	
Performance

• Sequential	processor	performance	not	expected	
to	increase	much,	and	might	go	down

• If	want	apps	with	more	capability,	have	to	
embrace	parallel	processing	(SIMD	and	MIMD)

• In	mobile	systems,	use	multiple	cores	and	GPUs
• In	warehouse-scale	computers,	use	multiple	
nodes,	and	all	the	MIMD/SIMD	capability	of	each	
node
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Multiprocessors	and	You
• Only	path	to	performance	is	parallelism
– Clock	rates	flat	or	declining
– SIMD:	2X	width	every	3-4	years

• 256b	wide	now,	512b	Xeon	Processors,	1024b	in	2018?
– MIMD:	Add	2	cores	every	2	years:	2,	4,	6,	8,	10,	…

• Key	challenge	is	to	craft	parallel	programs	that	have	
high	performance	on	multiprocessors	as	the	number	of	
processors	increase	– i.e.,	that	scale
– Scheduling,	load	balancing,	time	for	synchronization,	
overhead	for	communication

• Project	3:	fastest	code	on	10-core	computer	(SIMD	and	
MIMD!)
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Threads
• Thread:	a	sequential	flow	of	instructions	that	
performs	some	task

• Each	thread	has	a	PC	+	processor	registers and	
accesses	the	shared	memory

• Each	processor	provides	one	(or	more)	
hardware	threads	that	actively	execute	
instructions

• Operating	system	multiplexes	multiple	
software	threads	onto	the	available	hardware	
threads
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Operating	System	Threads
Give	the	illusion	of	many	active	threads	by	time-
multiplexing	software	threads	onto	hardware	
threads

• Remove	a	software	thread	from	a	hardware	
thread	by	interrupting	its	execution	and	saving	its	
registers	and	PC	into	memory
– Also	if	one	thread	is	blocked	waiting	for	network	
access	or	user	input

• Can	make	a	different	software	thread	active	by	
loading	its	registers	into	a	hardware	thread’s	
registers	and	jumping	to	its	saved	PC
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Hardware	Multithreading
• Basic	idea:	Processor	resources	are	expensive	and	
should	not	be	left	idle

• Long	memory	latency	to	memory	on	cache	miss?
• Hardware	switches	threads	to	bring	in	other	
useful	work	while	waiting	for	cache	miss

• Cost	of	thread	context	switch	must	be	much	less	
than	cache	miss	latency

• Put	in	redundant	hardware	so	don’t	have	to	save	
context	on	every	thread	switch:
– PC,	Registers

• Attractive	for	apps	with	abundant	TLP
– Commercial	multi-user	workloads
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Hardware	Multithreading	
(aka	Hyperthreading)
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Multithreading	vs.	Multicore
• Multithreading	=>	Better	Utilization	
– ≈5%	more	hardware,	1.10X	better	performance?
– Share	integer	adders,	floating-point	units,	all	caches	
(L1	I$,	L1	D$,	L2$,	L3$),	Memory	Controller

• Multicore	=>	Duplicate	Processors
– ≈50%	more	hardware,	≈2X	better	performance?
– Share	outer	caches	(L2$,	L3$),	Memory	Controller

• Modern	machines	do	both
–Multiple	cores	with	multiple	threads per	core
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Sören’s MacBook
• sysctl -a | grep hw\.
MacBookPro11,3
…
hw.physicalcpu:	4
hw.logicalcpu:	8
…
hw.cpufrequency =	
2,800,000,000		

hw.memsize =	17,179,869,184

hw.cachelinesize =	64
hw.l1icachesize:	32,768
hw.l1dcachesize:	32,768
hw.l2cachesize:	262,144
hw.l3cachesize:	6,291,456

on	Linux:
cat /proc/cpuinfo
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Sören’s iPad	Air	2

Apple	A8X	processor:
• 3	cores!
• L1	$:	64KB	data,	64KB	
instruction

• L2	$:	2MB
• L3	$:	4MB
• Max	1.5GHz	clock
• 64bit	ARM	ISA
• 2	GB	RAM

Comparison:
iPad	Pro:	A9X	processor:
• Back	to	2	cores…
• L1	$:	64KB	data,	64KB	
instruction

• L2	$:	3MB
• No	L3	$:	double	
memory	bandwidth…

• 4	or	2	GB	RAM

15



Admin

• HW	6	due	on	Friday,	May	5	23:59:59	(May	6	
12am	on	gradescope)	–

• gradescope allows	late	submissions	till	May	9	
(slip	days)

• Upload	your	pdf	yourself	– stick	to	the	
template!

• HW	5	still	needs	some	time	– some	students	
submitted	”incorrect”	number	of	pages	–
gradescope doesn’t	support	this…

5/2/17 Fall	2013	-- Lecture	#15 16



100s	of	(Mostly	Dead)	
Parallel	Programming	Languages
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ActorScript Concurrent Pascal JoCaml Orc
Ada Concurrent ML Join Oz
Afnix Concurrent Haskell Java Pict
Alef Curry Joule Reia
Alice CUDA Joyce SALSA
APL E LabVIEW Scala
Axum Eiffel Limbo SISAL
Chapel Erlang Linda SR
Cilk Fortan 90 MultiLisp Stackless Python
Clean Go Modula-3 SuperPascal
Clojure Io Occam VHDL
Concurrent C Janus occam-π XC



OpenMP

• OpenMP	is	a	language	extension	used	for	
multi-threaded,	shared-memory	parallelism
– Compiler	Directives	(inserted	into	source	code)
– Runtime	Library	Routines	(called	from	your	code)
– Environment	Variables	(set	in	your	shell)

• Portable
• Standardized
• Easy	to	compile:	cc –fopenmp name.c
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Shared	Memory	Model	with	Explicit	
Thread-based	Parallelism

• Multiple	threads	in	a	shared	memory	
environment,	explicit	programming	model	with	
full	programmer	control	over	parallelization

• Pros:
– Takes	advantage	of	shared	memory,	programmer	need	
not	worry	(that	much)	about	data	placement

– Compiler	directives	are	simple	and	easy	to	use
– Legacy	serial	code	does	not	need	to	be	rewritten

• Cons:
– Code	can	only	be	run	in	shared	memory	environments
– Compiler	must	support	OpenMP (e.g.	gcc 4.2)
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OpenMP in	CS110

• OpenMP is	built	on	top	of	C,	so	you	don’t	have	to	
learn	a	whole	new	programming	language
– Make	sure	to	add		#include <omp.h>
– Compile	with	flag:		gcc -fopenmp

– Mostly	just	a	few	lines	of	code	to	learn
• You	will	NOT	become	experts	at	OpenMP
– Use	slides	as	reference,	will	learn	to	use	in	lab

• Key	ideas:
– Shared	vs.	Private	variables
– OpenMP directives	for	parallelization,	work	sharing,	
synchronization
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OpenMP Programming	Model
• Fork	- Join	Model:

• OpenMP programs	begin	as	single	process	(master	thread)	
and	executes	sequentially	until	the	first	parallel	region	
construct	is	encountered
– FORK:		Master	thread	then	creates	a	team	of	parallel	threads
– Statements	in	program	that	are	enclosed	by	the	parallel	region	

construct	are	executed	in	parallel	among	the	various	threads
– JOIN: When	the	team	threads	complete	the	statements	in	the	

parallel	region	construct,	they	synchronize	and	terminate,	
leaving	only	the	master	thread
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OpenMP	Extends	C	with	Pragmas	

• Pragmas are	a	preprocessor	mechanism	C	
provides	for	language	extensions

• Commonly	implemented	pragmas:	
structure	packing,	symbol	aliasing,	floating	
point	exception	modes	(not	covered)

• Good	mechanism	for	OpenMP	because	
compilers	that	don't	recognize	a	pragma	are	
supposed	to	ignore	them
– Runs	on	sequential	computer	even	with	
embedded	pragmas
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parallel Pragma	and	Scope

• Basic	OpenMP construct	for	parallelization:
#pragma omp parallel 
{

/* code goes here */
}
– Each thread	runs	a	copy	of	code	within	the	block
– Thread	scheduling	is	non-deterministic

• OpenMP default	is	shared variables
– To	make	private,	need	to	declare	with	pragma:
#pragma omp parallel private (x)
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This	is	annoying,	but	curly	brace	MUST	go	on	separate	
line	from	#pragma



What	Kind	of	Threads?

• OpenMP	threads	are	operating	system	(software)	
threads.

• OS	will	multiplex	requested	OpenMP	threads	onto	
available	hardware	threads.

• Hopefully	each	gets	a	real	hardware	thread	to	run	
on,	so	no	OS-level	time-multiplexing.

• But	other	tasks	on	machine	can	also	use	hardware	
threads!
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OMP_NUM_THREADS

• OpenMP intrinsic	to	set	number	of	threads:
omp_set_num_threads(x);

• OpenMP intrinsic	to	get	number	of	threads:
num_th = omp_get_num_threads();

• OpenMP	intrinsic	to	get	Thread	ID	number:
th_ID = omp_get_thread_num();
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Parallel	Hello	World
#include <stdio.h>
#include <omp.h>
int main () {
int nthreads, tid;

/* Fork team of threads with private var tid */
#pragma omp parallel private(tid)
{
tid = omp_get_thread_num(); /* get thread id */
printf("Hello World from thread = %d\n", tid);

/* Only master thread does this */
if (tid == 0) {
nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
} /* All threads join master and terminate */

}
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Data	Races	and	Synchronization
• Two	memory	accesses	form	a	data	race	if	from	
different	threads	to	same	location,	and	at	least	
one	is	a	write,	and	they	occur	one	after	another

• If	there	is	a	data	race,	result	of	program	can	vary	
depending	on	chance	(which	thread	first?)

• Avoid	data	races	by	synchronizing	writing	and	
reading	to	get	deterministic	behavior

• Synchronization	done	by	user-level	routines	that	
rely	on	hardware	synchronization	instructions

• (more	later)
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Analogy:	Buying	Milk

• Your	fridge	has	no	milk.	You	and	your	
roommate	will	return	from	classes	at	some	
point	and	check	the	fridge

• Whoever	gets	home	first	will	check	the	fridge,	
go	and	buy	milk,	and	return

• What	if	the	other	person	gets	back	while	the	
first	person	is	buying	milk?
– You’ve	just	bought	twice	as	much	milk	as	you	
need!

• It	would’ve	helped	to	have	left	a	note…
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Lock	Synchronization	(1/2)

• Use	a	“Lock”	to	grant	access	to	a	region	
(critical	section)	so	that	only	one	thread	can	
operate	at	a	time
– Need	all	processors	to	be	able	to	access	the	lock,	
so	use	a	location	in	shared	memory	as	the	lock

• Processors	read	lock	and	either	wait	(if	locked)	
or	set	lock	and	go	into	critical	section
– 0means	lock	is	free	/	open	/	unlocked	/	lock	off
– 1means	lock	is	set	/	closed	/	locked	/	lock	on
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Lock	Synchronization	(2/2)

• Pseudocode:

Check lock

Set the lock

Critical section

(e.g. change shared variables)

Unset the lock

30

Can	loop/idle	here
if	locked



Possible	Lock	Implementation

• Lock	(a.k.a.	busy	wait)
Get_lock:                  # $s0 -> addr of lock

addiu $t1,$zero,1   # t1 = Locked value 

Loop:  lw $t0,0($s0)    # load lock

bne $t0,$zero,Loop  # loop if locked

Lock:  sw $t1,0($s0)       # Unlocked, so lock

• Unlock
Unlock:

sw $zero,0($s0)

• Any	problems	with	this?
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Possible	Lock	Problem

• Thread	1
addiu $t1,$zero,1

Loop: lw $t0,0($s0)

bne $t0,$zero,Loop

Lock: sw $t1,0($s0)

• Thread	2

addiu $t1,$zero,1

Loop: lw $t0,0($s0)

bne $t0,$zero,Loop

Lock: sw $t1,0($s0)
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Time
Both	threads	think	they	have	set	the	lock!		

Exclusive	access	not	guaranteed!



Hardware	Synchronization

• Hardware	support	required	to	prevent	an	
interloper	(another	thread)	from	changing	the	
value	
– Atomic	read/write	memory	operation
– No	other	access	to	the	location	allowed	between	
the	read	and	write

• How	best	to	implement	in	software?
– Single	instr?		Atomic	swap	of	register	↔	memory
– Pair	of	instr?		One	for	read,	one	for	write
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Synchronization	in	MIPS	

• Load	linked: ll rt,off(rs)
• Store	conditional: sc rt,off(rs)
– Returns	1 (success)	if	location	has	not	changed	
since	the	ll

– Returns	0 (failure)	if	location	has	changed

• Note	that	sc clobbers the	register	value	being	
stored	(rt)!
– Need	to	have	a	copy	elsewhere	if	you	plan	on	
repeating	on	failure	or	using	value	later
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Synchronization	in	MIPS	Example

• Atomic	swap	(to	test/set	lock	variable)
Exchange	contents	of	register	and	memory:	
$s4	↔Mem($s1)

try: add $t0,$zero,$s4 #copy value
ll $t1,0($s1)    #load linked
sc  $t0,0($s1)    #store conditional
beq $t0,$zero,try #loop if sc fails
add $s4,$zero,$t1 #load value in $s4
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sc would	fail	if	another	threads	executes	sc here



Test-and-Set

• In	a	single	atomic	operation:
– Test	to	see	if	a	memory	location	is	set	
(contains	a	1)

– Set	it	(to	1)	if	it	isn’t	(it	contained	a	zero	
when	tested)

– Otherwise	indicate	that	the	Set	failed,	
so	the	program	can	try	again

– While	accessing,	no	other	instruction	
can	modify	the	memory	location,	
including	other	Test-and-Set	instructions

• Useful	for	implementing	lock	
operations
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Test-and-Set	in	MIPS	

• Example: MIPS	sequence	for	
implementing	a	T&S	at	($s1)
Try: addiu $t0,$zero,1

ll $t1,0($s1)
bne $t1,$zero,Try
sc  $t0,0($s1)
beq $t0,$zero,Try

Locked:

# critical section

Unlock:
sw $zero,0($s1)
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Idea	is	that	not	for	programmers	
to	use	this	directly,	but	as	a	tool	
for	enabling	implementation	of	
parallel	libraries
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Question:		Consider	the	following	code	when	
executed	concurrently by	two	threads.

What	possible	values	can	result	in	*($s0)?

#   *($s0) = 100
lw $t0, 0($s0)
addi $t0, $t0,1
sw $t0, 0($s0)

A:	101	or	102
B:	100,	101,	or	102
C:	100	or	101



And	in	Conclusion,	…
• Sequential	software	is	slow	software
– SIMD	and	MIMD	only	path	to	higher	performance

• Multithreading	increases	utilization,	Multicore	
more	processors	(MIMD)

• OpenMP as	simple	parallel	extension	to	C
– Threads,	Parallel	for,	private,	critical	sections,	…	
– ≈	C:	small	so	easy	to	learn,	but	not	very	high	level	
and	it’s	easy	to	get	into	trouble
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