
CS	110
Computer	Architecture	

Course	Summary

Instructor:
Sören	Schwertfeger – Xu	Qingwen

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C



New	School	Computer	Architecture	(1/3)

2

Personal	
Mobile	
Devices



3

New	School	Computer	Architecture	(2/3)



4

New	School	Computer	Architecture	(3/3)



Old	Machine	Structures

5

CA

I/O	systemProcessor

Compiler
Operating
System
(Mac	OSX)

Application	(ex:	browser)

Digital	Design
Circuit	Design

Instruction	Set
Architecture

Datapath	&	Control	

transistors

MemoryHardware

Software Assembler



New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	in	

parallel	at	same	time
• Programming	Languages 6

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Leverage
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project	1

Project	3

Project	2



CA	is	NOT	about	C	Programming

• It’s	about	the	hardware-software	interface
–What	does	the	programmer	need	to	know	to	
achieve	the	highest	possible	performance

• Languages	like	C	are	closer	to	the	underlying	
hardware,	unlike	languages	like	Python!	
– Allows	us	to	talk	about	key	hardware	features	in	
higher	level	terms

– Allows	programmer	to	explicitly	harness	
underlying	hardware	parallelism	for	high	
performance:	“programming	for	performance”

7



Great	Ideas	in	Computer	Architecture

1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction

8



Powers	of	Ten	inspired	CA	Overview

• Going	Top	Down	cover	3	Views
1. Architecture	(when	possible)
2. Physical	Implementation	of	that	architecture
3. Programming	system	for	that	architecture	

and	implementation	(when	possible)

• See	http://www.powersof10.com/film

9



Earth

10

107 meters



The	Dalles,	Oregon

11

104 meters



The	Dalles,	Oregon

12

104 meters



Google’s	Oregon	WSC

13

103 meters



Google’s	Oregon	WSC

14

104 meters

103 meters102 meters10
	k
ilo
m
et
er
s



Google	Warehouse

• 90	meters	by	75	meters,	10	Megawatts
• Contains	40,000	servers,	190,000	disks
• Power	Utilization	Effectiveness:	1.23
– 85%	of	0.23	overhead	goes	to	cooling	losses
– 15%	of	0.23	overhead	goes	to	power	losses

• Contains	45,	40-foot	long	containers
– 8	feet	x 9.5	feet	x 40	feet

• 30	stacked	as	double	layer,	15	as	single	layer

15



Containers	in	WSCs

16

102 meters
10
0	
m
et
er
s



Google	Container

17

101 meters



Google	Container

• 2	long	rows,	each		with	29	
racks

• Cooling	below	raised	floor
• Hot	air	returned	behind	

racks

18

100 meters
10
	m

et
er
s



Equipment	Inside	a	Container

19

Server	(in	rack	
format):

7	foot	Rack:		servers	+	Ethernet	local	
area	network	switch	in	middle	(“rack	
switch”)

Array	(aka	cluster):		
server	racks	+	larger	local	
area	network	switch	
(“array	switch”)	10X	
faster	=>	cost	100X:	cost	
f(N2)



Google	Rack
• Google	rack	with	20	

servers	+	Network	Switch	
in	the	middle

• 48-port	1	Gigabit/sec	
Ethernet	switch	every	
other	rack

• Array	switches	connect	to	
racks	via	multiple	1	Gbit/s
links

• 2	datacenter	routers	
connect	to	array	switches	
over	10	Gbit/s links

20

100 meters
1	
m
et
er



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law

-- WSC,	Container,	Rack
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

--Multiple	WSCs,	Multiple	Racks,	Multiple	Switches
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Task	level	Parallelism,	Data	Level	Parallelism

21



Google	Server	Internals

22

Google	Server

10-1 meters
10
	c
en

tim
et
er
s



Google	Board	Details

• Supplies	only	12	volts
• Battery	per	board	vs.	
large	battery	room
– Improves	PUE:	99.99%	
efficient	local	battery	vs
94%	for	battery	room

• 2	SATA	Disk	Drives
– 1	Terabyte	capacity	each
– 3.5	inch	disk	drive
– 7200	RPM

• 2	AMD	Opteron
Microprocessors
– Dual	Core,	2.2	GHz

• 8	DIMMs
– 8	GB	DDR2	DRAM

• 1	Gbit/sec	Ethernet	
Network	Interface	Card

23



Programming	Multicore	
Microprocessor:	OpenMP

#include	<omp.h>
#include	<stdio.h>
static	long	num_steps =	100000;	
int	value[num_steps];	
int	reduce()	
{ int	i;	 int	sum	=	0;	
#pragma omp parallel	for	private(x)	reduction(+:sum)

for	(i=1;	i<=	num_steps;	i++){	
sum	=	sum	+	value[i];	

}	
}

24



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law

-- More	transistors	=	Multicore	+	SIMD
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy

-- More	transistors	=	Cache	Memories
6. Performance	via	Parallelism/Pipelining/

Prediction
-- Thread-level	Parallelism

25



AMD	Opteron Microprocessor

26

10-2 meters
ce
nt
im

et
er
s



AMD	Opteron Microarchitecture

72	physical	
registers

27



AMD	Opteron Pipeline	Flow
• For	integer	operations

− 12	stages	(Floating	Point	is 17	stages)
− Up	to	106	RISC-ops	in	progress

28



AMD	Opteron Block	Diagram

29

AGUAGU

Int	Decode	&	Rename

FADD FMISCFMUL
44-entry
Load/Store
Queue

36-entry	FP	scheduler

FP	Decode	&	Rename

ALU

AGU

ALU

MULT

ALU

Res Res Res

L1
Icache
64B

L1
Dcache
64KB

Fetch Branch
Prediction

Instruction	Control	Unit	(72	entries)

Fastpath Microcode	Engine
Scan/Align/Decode

µops



AMD	Opteron Microprocessor

30

10-2 meters
ce
nt
im

et
er
s



AMD	Opteron Core

31

10-3 meters
m
ill
im

et
er
s



Programming	One	Core:	
C	with	Intrinsics	

void	mmult(int n,	float	*A,	float	*B,	float	*C)
{
for	(	int i =	0;	i <	n;	i+=4	)
for	(	int j	=	0;	j	<	n;	j++	)	
{
__m128	c0	=	_mm_load_ps(C+i+j*n);
for(	int k	=	0;	k	<	n;	k++	)
c0	=	_mm_add_ps(c0,	_mm_mul_ps(_mm_load_ps(A+i+k*n),		

_mm_load1_ps(B+k+j*n)));
_mm_store_ps(C+i+j*n,	c0);
}

}



Inner	loop	from	gcc –O	-S
Assembly	snippet	from	innermost	loop:

movaps (%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm8
movaps 16(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm7
movaps 32(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm6
movaps 48(%rax),	%xmm9
mulps %xmm0,	%xmm9
addps %xmm9,	%xmm5



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law
2. Abstraction	to	Simplify	Design

-- Instruction	Set	Architecture,	Micro-operations
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy
5. Memory	Hierarchy
6. Performance	via	

Parallelism/Pipelining/Prediction
-- Instruction-level	Parallelism	(superscalar,	pipelining)
-- Data-level	Parallelism

34



SIMD	Adder

• Four	32-bit	adders	that	
operate	in	parallel
– Data	Level	Parallelism

35



One	32-bit	Adder

36



1	bit	of	32-bit	Adder

37



Complementary	MOS	Transistors	
(NMOS	and	PMOS)	of	NAND	Gate

3v

X Y

0v

Z

38

x y z

0 volts

3 volts

0 volts

3 volts

0 volts

0 volts
3 volts

3 volts

3 volts

3 volts

3 volts

0 volts

NAND	gate



Physical	Layout	of	NAND	Gate

39

10-7 meters
10

0	
na
no

m
et
er
s



Scanning	Electron	Microscope

40

10-7 meters

Cross	Section
Top	View

10
0	
na
no

m
et
er
s



Block	Diagram	of	Static	RAM

41

10-6 meters



1	Bit	SRAM	in	6	Transistors

42



Physical	Layout	of	SRAM	Bit

43

10-7 meters
10

0	
na
no

m
et
er
s



SRAM	Cross	Section

44

10-7 meters
10

0	
na
no

m
et
er
s



DIMM	Module

• DDR	=	Double	Data	Rate
– Transfers	bits	on	Falling	AND	Rising	Clock	Edge

• Has	Single	Error	Correcting,	Double	Error	
Detecting	Redundancy	(SEC/DED)
– 72	bits	to	store	64	bits	of	data
– Uses	“Chip	kill”	organization	so	that	if	single	
DRAM	chip	fails	can	still	detect	failure

• Average	server	has	22,000	correctable	errors	
and	1	uncorrectable	error	per	year	

45



DRAM	Bits

46

10-6 meters
1	
m
ic
ro
n



DRAM	Cell	in	Transistors

47



Physical	Layout	of	DRAM	Bit

48



Cross	Section	of	DRAM	Bits

49

10-7 meters

10
0	
na
no

m
et
er
s



AMD	Dependability
•	L1	cache	data	is	SEC/DED	protected
•	L2	cache	and	tags	are	SEC/DED	protected
•	DRAM	is	SEC/DED	protected	with	chipkill
•	On-chip	and	off-chip	ECC	protected	arrays	include	
autonomous,	background	hardware	scrubbers

•	Remaining	arrays	are	parity	protected	
– Instruction	cache,	tags	and	TLBs
– Data	tags	and	TLBs
– Generally	read	only	data	that	can	be	recovered	
from	lower	levels

50



• The	blocked	version	of	the	i-j-k algorithm	is	written	
simply	as	(A,B,C	are	submatricies of	a,	b,	c)

for (i=0;i<N/r;i++)
for (j=0;j<N/r;j++)
for (k=0;k<N/r;k++)
C[i][j] += A[i][k]*B[k][j]

– r =	block	(sub-matrix)	size	(Assume	r divides	N)
– X[i][j] =		a	sub-matrix	of	X,	defined	by	block	row	i and	
block	column	j

Programming	Memory	Hierarchy:	
Cache	Blocked	Algorithm



Great	Ideas	in	Computer	Architecture
1. Design	for	Moore’s	Law

-- Higher	capacities	caches	and	DRAM
2. Abstraction	to	Simplify	Design
3. Make	the	Common	Case	Fast
4. Dependability	via	Redundancy

-- Parity,	SEC/DEC
5. Memory	Hierarchy

-- Caches,	TLBs
6. Performance	via	Parallelism/Pipelining/Prediction

-- Data-level	Parallelism

52



Course	Summary

• As	the	field	changes,	Computer	Architecture	
courses	change,	too!

• It	is	still	about	the	software-hardware	
interface
– Programming	for	performance!
– Parallelism:	Task-,	Thread-,	Instruction-,	and	Data-
MapReduce,	OpenMP,	C,	SSE	instrinsics

– Understanding	the	memory	hierarchy	and	its	
impact	on	application	performance

• Interviewers	ask	what	you	did	this	semester!
53



Thanks	to	the	TAs!

• Xu	Qingwen徐晴雯
• ToDo:	Add	other	TA’s	info…

54


