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Relationships between 3 mappings

Direct Mapped

Different Organizations of an Eight-Block Cache
Set Associative

One-way set associative
(direct mapped)

Fully Associative: remove set index ook 129,258
3 Two-way set associative
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Direct Mapped Cache
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What kind of locality are we taking advantage of?



Direct Mapped Cache

A 16B cache

* Memory blocks with the
save Index could be
stored In the same data
address of a cache

* Compare Tag(the next 2
low-order bits) to judge If
the memory block ins In
cache

* [f In, add byte offset

Caching: A Simple
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Q: Is the memory blockin
cache?

Comparethecache tagtothe
high-order 2 memory address
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First Example

Main Memory

One word blocks

Two low order bits (xx)
define the byte in the
block (32b words)

Q: Where inthe cache is
the mem block?

Use next 2 low-order
memory address bits—
the index—to determine
which cache block (i.e.,
modulo the number of
blocksin the cache)



Set-Assoclative Caches

Processor Address (32-bits total)
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Set Index | Block offset

* A mixture of Fully Associative and Direct Mapped
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Range of Set-Associative Caches

* For a fixed-size cache and fixed block size, each
increase by a factor of two in associativity doubles the
number of blocks per set (i.e., the number or ways)
and halves the number of sets — decreases the size of
the index by 1 bit and increases the size of the tagby 1

blt Used for tag compare Selects the set Selects the word in the block
Talg Inéex Word Ioffset Byte pffset

. o — > Increasing associativity
Decreasing associativity — «—

.} Fully associative

Direct mapped }.7 (only one set)
(only one way) Tag is all the bits except
Smaller tags, only a block and byte offset

single comparator



Direct Mapped 2-Way Associative

Cache Fill Cache Fill
M ain M ain
Memory Cache :  Memory Cache
Index Memory Index Memory
0 Index 0 : 0 Index 0, Way 0
1 Index 1 1 Index 0, Way 1
2 Index 2 Z Index 1, Way 0
3 Index 3 3 Index 1, Way 1
4 4
5 5
Ean:h lbcation in main memory can be . Ea-:h location in main memary can be

cached by just one cache bcation. cached by one of two cache bcations.



Set-Assoclative Caches

Processor Address (32-bits total)

Tag Set Index

Block offset

For a cache with constant total capacity, if we
increase the number of ways by a factor of 2,
which statement is false:

A: The number of sets could be doubled
B: The tag width could decrease

C: The block size could stay the same

D: The block size could be halved

E: Tag width must increase

212b2% =const— i + b + w =const
Tag width must increase by 1.

* 1 more index bit

* A: true If we divide

block size by 4
* B: False.

* C: byte offset not
changed

 D: b width-1
* E: Correct




Average Memory Access Time (AMAT)

* Average Memory Access Time (AMAT) is the
average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
+ Miss rate x Miss penalty

 Hit rate: fraction of accesses that hit in the cache
* Miss rate: 1 — Hit rate

* Miss penalty: time to replace a block from lower
level in memory hierarchy to cache

* Hit time: time to access cache memory (including
tag comparison)



Average Memory Access Time(AMAT)

AMAT = Time for a hit + Miss rate x Miss penalty

Given a 200 psec clock, a miss penalty of 50 clock
cycles, a miss rate of 0.02 misses per instruction and
a cache hit time of 1 clock cycle, what is AMAT?

O B: 400 psec

O Ds 2 800 psec



Understanding Cache Misses:
The 3Cs

 Compulsory (cold start or process migration, 15 reference):

— First access to block impossible to avoid; small effect for long
running programs

— Solution: increase block size (increases miss penalty; very large
blocks could increase miss rate)

* (Capacity:
— Cache cannot contain all blocks accessed by the program
— Solution: increase cache size (may increase access time)
* Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size
— Solution 2: increase associativity (may increase access time)



Exercise

* Consider a 32-bit physical memory space and a 32 KiB 2-way
assoclative cache with LRU replacement.

You are told the cache uses 5 bits for the offset field. Write in the
number of bits in the tag and index fields in the figure below.

Tag Index Offset

5 bits
31 0




Tag Index Offset

Exercise

31

* For the same cache, after the execution of the following code:

int ARRAY SIZE = 04 *x 1024;

int arr[ARRAY SIZE]: // *arr is aligned to a cache block

/% loop 1 %/ for (int i = 0; i < ARRAY SIZE: i += 8) arrli] = i;

/% loop 2 %/ for (int i = ARRAY SIZE - 8; i >=0; i == 8)
arr[i+1] = arrli];

* 1. What is the hit rate of loop 1? What types of misses (of the 3 Cs), if
any, occur as a result of loop 17?

* 2. What is the hit rate of loop 2? What types of misses (of the 3 Cs), If
any, occur as a result of loop 2?



int ARRAY SIZE = 64 * 1024;

int arr[ARRAY SIZE|: // *%arr is aligned to a cache block

/% loop 1 %/ for (int i = 0; i < ARRAY SIZE: i += 8) arrli] = i;

/% loop 2 %/ for (int i = ARRAY SIZE - 8; i >=0; i —= 8)
arr[i+l] = arrli];

* 1. What is the hit rate of loop 1? What types of misses (of the 3 Cs), if
any, occur as a result of loop 1? 0, Compulsory Misses

* 2. What is the hit rate of loop 2? What types of misses (of the 3 Cs), if
any, occur as a result of loop 2?7 9/16, Capacity Misses



Floating-Point Representation (1/2)

* Normal format: +1. wwo. 2YYYYiwo
* Multiple of Word Size (32 bits)
3130 2322
IS| Exponent | Q\
1 bit 8 bits 23 bits

* S represents Sign
xponent represents y’s
represents x’s

 Represent numbers as small as
2.0,., x 1038 to as large as 2.0, x 1038



 Summary (single precision):

3130 2322 0
S[ Exponent_ Significand
1 bit 8 bits 23 bits

*(-1)° x (1 + Significand) x 2(Exponent-127)

» We still haven’t used Exponent = 0,
Significand nonzero

- DEnormalized number: no (implied)
leading 1, implicit exponent = -126.




Special Numbers Summary

 Reserve exponents, significands:

Exponent
0

0

1-254
255

255

Significand Object

0 0
nonzero Denorm
anything +/- fl. pt. #
0 4/~
nonzero NaN







