Computer Architecture

Discussion 10

CB

Relationships between 3 mappings

Direct Mapped

Different Organizations of an Eight-Block Cache
Set Associative

One-way set associative
(direct mapped)

Fully Associative: remove set index ook 129,258
3 Two-way set associative
Set Tag Data Tag Data
- Processor Address (32-bits total) z 0
1
Tag Set Index | Block offset 4 5
Total size of $ in blocks is equal to > 3
number of sets x associativity. For 6
_ fixed S size and fixed block size, 7
Same format Of address. increasing associativity decreases sy sebssogkiiive
. number of sets while increasing)
If_eaCh set maps to N numbers, then: number of elements per set. With | Set Tag Data Tag Data Tag Data Tag Data
Direct Mapped: a+log(N)+c eight blocks, an 8-way set- 0
. L. associative $ is same as a fully 1
Set Associative: a+tn_w+(log(N)-n_w)+cC | associative 5.
Fully Associative: remove set index Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

N N N I

Direct Mapped Cache

* Only one comparator Is
enough — each memory

block 1s mapped to only valid bit ¥
ensurqs
1 index In cache something
. . useful in
* Number of index bits cache for
. _ this index
determined by cache size
. Comparg
and block size Tag with
. upper part of
* [Index_ num = cache size / Address to
see if a Hit

3130 ...

Byte offset

Tag

-~

20
Index

Index Valid

Tag

Da

ta

0

1

2

.
>

1021

1022

1023

20

2N\ (byte offset) (in Byte)

S

.32

* One word blocks, cache size = 1K words (or 4KB)

1312 11 ... 210
— 1+
+.10

Data
Read
data
from
cache
instead
of
memory
if a Hit

Comparator

What kind of locality are we taking advantage of?

Direct Mapped Cache

A 16B cache

* Memory blocks with the
save Index could be
stored In the same data
address of a cache

* Compare Tag(the next 2
low-order bits) to judge If
the memory block ins In
cache

* [f In, add byte offset

Caching: A Simple

Cache
Index Valid Tag Data

. [0000xx

L 0001xx

0xx

00

".2130011xx

01

"';‘Z‘OIOOxx

o 0101xx

o [

11 TN

10xx

Q: Is the memory blockin
cache?

Comparethecache tagtothe
high-order 2 memory address

bitsto tell if the memory
blockisinthe cache
(provided valid bitis set)

0111xx

- 11000xx

U 11001xx

Oxx

~11011xx

S]1100xx

S 11101xx

Oxx

“1111xx

First Example

Main Memory

One word blocks

Two low order bits (xx)
define the byte in the
block (32b words)

Q: Where inthe cache is
the mem block?

Use next 2 low-order
memory address bits—
the index—to determine
which cache block (i.e.,
modulo the number of
blocksin the cache)

Set-Assoclative Caches

Processor Address (32-bits total)

r 3

Tag

Set Index | Block offset

* A mixture of Fully Associative and Direct Mapped

3130 ...

13

1211 ...

210 , Byte offset

* FA: looks up every tag e | A
« DM: compare with only 1 tag = i |
° SA |OOkS up N WayS \C:V Tag Data c.V Tag Data 0V Tag Data OV Tag Data
. . . s e o e Y e s Y s
* Tag_width + index_width _.;r S — -
+ offset_width = const ”
* If one is changed, we can D NS nS pO
. . U U U U
change another to maintain | = .
: B [
the cache size. \j L\Jxlsfle-ct/
Hit Data

Range of Set-Associative Caches

* For a fixed-size cache and fixed block size, each
increase by a factor of two in associativity doubles the
number of blocks per set (i.e., the number or ways)
and halves the number of sets — decreases the size of
the index by 1 bit and increases the size of the tagby 1

blt Used for tag compare Selects the set Selects the word in the block
Talg Inéex Word Ioffset Byte pffset

. o — > Increasing associativity
Decreasing associativity — «—

.} Fully associative

Direct mapped }.7 (only one set)
(only one way) Tag is all the bits except
Smaller tags, only a block and byte offset

single comparator

Direct Mapped 2-Way Associative

Cache Fill Cache Fill
M ain M ain
Memory Cache : Memory Cache
Index Memory Index Memory
0 Index 0 : 0 Index 0, Way 0
1 Index 1 1 Index 0, Way 1
2 Index 2 Z Index 1, Way 0
3 Index 3 3 Index 1, Way 1
4 4
5 5
Ean:h lbcation in main memory can be . Ea-:h location in main memary can be

cached by just one cache bcation. cached by one of two cache bcations.

Set-Assoclative Caches

Processor Address (32-bits total)

Tag Set Index

Block offset

For a cache with constant total capacity, if we
increase the number of ways by a factor of 2,
which statement is false:

A: The number of sets could be doubled
B: The tag width could decrease

C: The block size could stay the same

D: The block size could be halved

E: Tag width must increase

212b2% =const— i + b + w =const
Tag width must increase by 1.

* 1 more index bit

* A: true If we divide

block size by 4
* B: False.

* C: byte offset not
changed

 D: b width-1
* E: Correct

Average Memory Access Time (AMAT)

* Average Memory Access Time (AMAT) is the
average time to access memory considering
both hits and misses in the cache

AMAT = Time for a hit
+ Miss rate x Miss penalty

 Hit rate: fraction of accesses that hit in the cache
* Miss rate: 1 — Hit rate

* Miss penalty: time to replace a block from lower
level in memory hierarchy to cache

* Hit time: time to access cache memory (including
tag comparison)

Average Memory Access Time(AMAT)

AMAT = Time for a hit + Miss rate x Miss penalty

Given a 200 psec clock, a miss penalty of 50 clock
cycles, a miss rate of 0.02 misses per instruction and
a cache hit time of 1 clock cycle, what is AMAT?

O B: 400 psec

O Ds 2 800 psec

Understanding Cache Misses:
The 3Cs

 Compulsory (cold start or process migration, 15 reference):

— First access to block impossible to avoid; small effect for long
running programs

— Solution: increase block size (increases miss penalty; very large
blocks could increase miss rate)

* (Capacity:
— Cache cannot contain all blocks accessed by the program
— Solution: increase cache size (may increase access time)
* Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution 1: increase cache size
— Solution 2: increase associativity (may increase access time)

Exercise

* Consider a 32-bit physical memory space and a 32 KiB 2-way
assoclative cache with LRU replacement.

You are told the cache uses 5 bits for the offset field. Write in the
number of bits in the tag and index fields in the figure below.

Tag Index Offset

5 bits
31 0

Tag Index Offset

Exercise

31

* For the same cache, after the execution of the following code:

int ARRAY SIZE = 04 *x 1024;

int arr[ARRAY SIZE]: // *arr is aligned to a cache block

/% loop 1 %/ for (int i = 0; i < ARRAY SIZE: i += 8) arrli] = i;

/% loop 2 %/ for (int i = ARRAY SIZE - 8; i >=0; i == 8)
arr[i+1] = arrli];

* 1. What is the hit rate of loop 1? What types of misses (of the 3 Cs), if
any, occur as a result of loop 17?

* 2. What is the hit rate of loop 2? What types of misses (of the 3 Cs), If
any, occur as a result of loop 2?

int ARRAY SIZE = 64 * 1024;

int arr[ARRAY SIZE|: // *%arr is aligned to a cache block

/% loop 1 %/ for (int i = 0; i < ARRAY SIZE: i += 8) arrli] = i;

/% loop 2 %/ for (int i = ARRAY SIZE - 8; i >=0; i —= 8)
arr[i+l] = arrli];

* 1. What is the hit rate of loop 1? What types of misses (of the 3 Cs), if
any, occur as a result of loop 1? 0, Compulsory Misses

* 2. What is the hit rate of loop 2? What types of misses (of the 3 Cs), if
any, occur as a result of loop 2?7 9/16, Capacity Misses

Floating-Point Representation (1/2)

* Normal format: +1. wwo. 2YYYYiwo
* Multiple of Word Size (32 bits)
3130 2322
IS| Exponent | Q\
1 bit 8 bits 23 bits

* S represents Sign
xponent represents y’s
represents x’s

 Represent numbers as small as
2.0,., x 1038 to as large as 2.0, x 1038

 Summary (single precision):

3130 2322 0
S[Exponent_ Significand
1 bit 8 bits 23 bits

*(-1)° x (1 + Significand) x 2(Exponent-127)

» We still haven’t used Exponent = 0,
Significand nonzero

- DEnormalized number: no (implied)
leading 1, implicit exponent = -126.

Special Numbers Summary

 Reserve exponents, significands:

Exponent
0

0

1-254
255

255

Significand Object

0 0
nonzero Denorm
anything +/- fl. pt. #
0 4/~
nonzero NaN

