Computer Architecture

Discussion 12

CB

SID:

M2-1: / couldn’t come up with a clever title for SDS. (10 points)

a) Give the simplest Boolean expression for the following circuit in terms of A and B, using the

minimum number of AND, OR, and NOT gates:

D

e
-

C=
(You must show your work above to earn points.)

b) Using as few states as possible, complete the transition table for an FSM that takes an input with
3 values: 0, 1, or 2. The machine will output a 1 when the sum of the inputs seen so far is divisible

by 3. Otherwise it should output a 0.

Assume you have seen no digits at the start state. You might not need all of the states, and you
should not draw additional states. You must represent your FSM using the table to the left, the
table is the only part that will be graded. The first transition has been filled in for you.

Current | Input/Output | Next . = 7
State State !
A 1/0 B

b) Using as few states as possible, complete the transition table for an FSM that takes an input with
3 values: 0, 1, or 2. The machine will output a 1 when the sum of the inputs seen so far is divisible
by 3. Otherwise it should output a 0.

Assume you have seen no digits at the start state. You might not need all of the states, and you
should not draw additional states. You must represent your FSM using the table to the left, the
table is the only part that will be graded. The first transition has been filled in for you.

CURRENT | INPUT/OUTPUT | NEXT 12 >
STATE STATE | ser
A 170 B
A 0/1 A
A 210 C
B 2/1 A
B 0/0 B
B 1/0 C
C 11 A
C 210 B
C 0/0 C

Q1: Finite State Machine (8 points)

Answer the questions below for the finite state machine in this diagram:

1. Complete the truth table shown below. (2 points)

Input Output

State In State Out

Sp=00 0 S, =10 0
00 1 01 1
01 0 11 0
01 1 10 0
10 0 01 1
10 1 11 0
11 0 00 0
11 1 01 1

Input Output
State In State Out
So = 00 0 So =10 0
00 1 01 1
01 0 11 0
01 1 10 0
10 0 01 1
10 1 11 0
11 0 00 0
11 1 01 1
2. Fill in the blanks in the diagram below. (3 points.)
o 'S N . S S N S N S N S D e
State | 10 01 00 |
In 1 | i
Out | 0

3. The finite state machine is required to operate at a frequency f;x = SGHz. The finite state machine

is realized with combinatorial logic with delay f: = 120ps and flip-flops with hold and clock-to-Q
times of th0¢ = 50ps and t.k2q = 70ps, respectively.

What is the maximum value of the flip-flop setup time tse1p that allows the finite state machine to

operate at a clock frequency of up to f.x = 5GHz? Suggestion: draw a complete timing diagram. (3
points)

tsetup < 200-120-70=10ps (state the unit of your result).

c) Suppose we add registers to the unoptimized circuit in part A to increase the clock rate (this
modification is shown below). What is the longest clock-t0-Q that the registers on inputs A and B can
have that will result in correct behavior when the circuit is clocked at 10 MHz?

00

St i —"D_

o
2

B

| 00

Ce)
)

o
D

Assumptions:

Assume that clock-to-Q > hold time

All registers have a setup time of 2 ns

All logic gates have a delay of 25 ns

Bubbles on gates do not introduce additional delay Answer: 48ns

You are given the following digital circuit. The registers have a setup time of 5ns, a hold time of 3ns,
and a CLK-to-Q delay of 5ns, and all logic gates have a delay of 20ns. Assume inputs A and B are
driven by registers with the same specifications.

a) What is the critical path delay, and what is the maximum clock frequency at which the circuit will
operate correctly? You may leave answers as fractions.

(CLK-to-Q + CL + CL + setup) = 50 ns
1/ (50 ns) = 20 MHz

b) Someone meddles with the circuit, increasing the register hold time to 10ns and setting the clock
rate to 1 Hz. Will the circuit still work after these changes? Explain your reasoning.

Hold time violation. CLK-to-Q < hold time so the second register will fail

c) What simplification could be made to this circuit to decrease the critical path delay without
changing the exact sequence of outputs?

Replace the left combinational logic with a single XOR gate

Note that adding a register would change the exact sequence of outputs (delaying by one)

Graphical Pipeline Representation

« RegFile: left half is write, right half is read

- e~) O =

= 0® Q=0

Load
Add

Store

Sub
Or

I$?

. Time (_cloc.k cycles_)

Reg

23

Pipelining Hazards

A hazard is a situation that prevents starting the
next instruction in the next clock cycle
1) Structural hazard

— A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard

— Data dependency between instructions

— Need to wait for previous instruction to complete
its data read/write

3) Control hazard
— Flow of execution depends on previous instruction

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

I$?

Load Can we read

: and write to
: registers

~ Eﬁg‘lultaneously
D$ |r_Reg

— >

Instrd . 1 Tt H DS r Reg

=) 5 =

Instr 1

Instr 2

Instr 3

= 0Q=<0

Data Hazard: Loads (3/4)

e Stalled instruction converted to “bubble”, acts like nop

Iw $t0, 0($t1) | Jiiwal 3

SUb y t2 I$.§.|.-Re '

11 D$

-
-

:ble

Reg |:

Reg |

dble

‘bub { bub { bub }

le

sub$t3st0.82. | [F]
and $t5,$t0,$t4

First two pipe /
or $t7,5t0,%tstages stall by
repeating stage
one cycle later

D$

I$f

Reg

: {D$

41

Stall => 2 Bubbles/Clocks

Time (clock cycles)

I

n I$
S |beq
t :
I.

Instr 1

cr) Instr 2

d |Instr 3
e

' YInstr 4

We found that the instruction fetch and memory stages are the critical path of our 5-stage pipelined
MIPS CPU. Therefore, we changed the IF and MEM stages to take two cycles while increasing the
clock rate. You can assume that the register file is written at the falling edge of the clock.

1
Memory 1 :

/:E‘ranch '
N

-
E=

Write

Instruction
Back

Fetch 2

Instruction
Fetch 1

Decode [Register Read : Execute : Memory 2
1 1

_- .{ﬂ-----

Instruction e
M!emory P
[

Inst
! [25:21)

Mem |

Array |

Inst
[20:16]

ALUSrc ALUCtr

Inst[15:0]
—

' 1 ’(f?‘
1
" Extended
] 1 _/_/
1 Inst[31:26
: 1 Inst[5:0] T ; S
y 1
: 1/ Control ExtOp RegWr |
! ! Unit | L]
1 1 . |
; ((2 #
1
[44 | .
{*4] . i
1 [
1
. T
i 1

Assume that no pipelining optimizations have been made, and that branch comparisons are made by
the ALU. Here’s how our pipeline looks when executing two add instructions:

Clock Cycle # 1 2 3 4 5 6 7 8
add $t0, $t1, $t2 IF1 |IF2 | ID | EX | MEM1 | MEM2 | WB
add $t3, $t4, $t5 IF1 [IF2 | ID EX |MEM1|MEM2 | WB

Make sure you take a careful look at the above diagram before answering the following questions:
a. How many stalls would a data hazard between back-to-back instructions require?
3 stalls

b. How many stalls would be needed after a branch instruction?
4 stalls

c. Suppose the old clock period was 150 ns and the new clock period is now 100ns. Would our
processor have a significant speedup executing a large chunk of code...
i. Without any pipelining hazards? Explain your answer in 1-2 sentences.

Yes, due to 1.5x throughput

ii. With 50% of the code containing back-to-back data hazards? Explain your answer in 1-
2 sentences.

Yes, penalty is_:.’_.O(_)_ns_ _p_er hazard in both cases, so our new processor will still have higher
throughtput.

