Computer Architecture

Discussion 13

Parallelism

Parallelism

* Thread Level Parallelism (TLP):

* Executing different processes (threads) of the same program on
different processors. Threads can communicate with each other.

e Data Level Parallelism (DLP):
* Operating on independent data simultaneously.

SISD

Flynn’s Taxonomy

SISD

Instruction Pool

Data Pool

SIMD

SIMD

Instruction Pool

PU|+

Data Pool

-|PU|-

-[pul--

-[pu|--

MISD

Data Pool

MISD

Instruction Pool

PU|~ —|PU|+

MIMD
MIMD Instruction Pool
Z|—lpul{ [pul|-
3
a|—[pul L|pul-
—|pul Llpul-

SSE

#include <stdio.h>

#include <emmintrin.h> /* header file for the SSE intrinsics */

int main(int argc, char **argv) {
/* set A = |1 3], B =
|2 4]

|3 0]
|0 2]

double A[4] = {1,2,3,4}, B[4]

/* We are computing C = C + A x B,
C[0] += A[0]*B[0] + A[2]*B[1]
C[1l] += A[1]*B[0] + A[3]*B[1]
C[2] += A[0]*B[2] + A[2]*B[3]

{3,0,0,2}, C[4]

C[3] += A[1]*B[2] + A[3]*B[3] */

C = |0 0]
|0 o] =*/
= {0,0,0,0};

which means:

/* load entire matrix C into SIMD variables */

~ ml28d cl1 = mm loadu pd(C+0); /* cl
~ ml28d c2 = mm loadu pd(C+2); /* c2

for(int i = 0; i < 2; i++) {
_ ml28d a
__ml28d bl
_ml28d b2

cl
c2

}

= mm loadu pd(A+i*2)
_mm_loadl_pd(B+0+i)
_mm_loadl pd(B+2+i)

_mm _add pd(cl, mm mul pd(
_mm_add pd(c2, mm mul pd(

~e we we

a, bl))
a, b2))

(croj,criy) */
(Cr21,Cr31) */

/* load next column of A */

/* load next row of B */

/* multiply and add */

~e we

/* store the result back to the C array */

_mm_storeu pd(C+0, cl); /* (C[0],C[1])
_mm_storeu pd(C+2, c2); /* (C[2],C[3])

/* output whatever we've got */

printf("|%g %g| * |%g %g| = |%g %g[\n",
|$g %g|\n",

printf("|%g %g| [%g %q]

return 0;

=cl */
= c2 */

A[0], A[2], B[O], B[2], C[0], C[2]);
A[l], A[3], B[1l], B[3], C[1], C[3]):

Amdahl’s

Big Idea: Amdahl’s Law
Law

Speedup = 1
(1-F) + F

Non-speed-up part — S Speed-up part

Example: the execution time of half of the program can
be accelerated by a factor of 2.
What is the program speed-up overall?

1 1

0.5+05 0.5+0.25

133

Exercise

* Speedup

e 1. Consider an enhancement which runs 20 times faster but which is
only usable 25% of the time

e 2. What if its usable only 15% of the time?

* In a given program, 95% of the execution time can be parallelized.
How many processors are needed to achieve a speed-up of over 10?

Speedup

Amdahl’'s Law

20, 00 —————————— —
If the portion of "
18.00 the program that / - _
L6.00L. €aN be parallelized / Parallelszczzlon
is small, then the // — 75%
14.004- speedup is limited 90%
/ — 95%
12.00 .
10.00 / /)_.,_l
8.00 / e - The non-parallel
/ portion limits
6.00 // the performance
4.00 .,// —
L~)
2.00-
O'OOH NS o © o A
—

256

<r @
™ o ™~
—~

51
1024
2048
4096
8192

16384

Number of Processors

32768
6553

Strong and Weak Scaling

e Strong scaling: when speedup can be achieved on a parallel processor
without increasing the size of the problem

 Weak scaling: when speedup is achieved on a parallel processor by
increasing the size of the problem proportionally to the increase in
the number of processors

Strong scaling: when speedup can be achieved on a parallel processor without
increasing the size of the problem

Weak scaling: when speedup is achieved on a parallel processor by increasing the
size of the problem proportionally to the increase in the number of processors

You have to solve a problem using Amazon EC2 servers. You know the server will finish
the problem in an hour using 10 machines, but the deadline for your solution is just over
1 minute away. You attempt to solve the problem quickly by running an instance with
600 machines.

However, even though the cluster magically booted up instantaneously, you were late
turning in your project and wasted a lot of money in the endeavor. This scenario
indicates your solution lacked which kind of scaling? Circle one:

Strong Scaling Weak Scaling

Openmp

* Thread Level Parallelism

Master
Thread

Parallel regions

* The parallel directive forks a team of threads, each of which
executes the followingregion, enclosed in {...}.
Basic OpenMP construct for parallelization:
#pragma omp parallel

{ < This is annoying, but curly brace MUST go on separate
line from #pragma

/* code goes here */

}

Threadsdoa join at end of parallel region, and execution resumes
with the single master thread.

Number of threads can be set by
 num_threads clause after the parallel directive.
 omp_set num threads() library routine previously called.

* Environment variable OMP_NUM_THREADS.
 Recommendation is one thread per processor / core.

Threads can do the work in the region in parallel.
* Can do different things based on thread ID.
* Can share work using for, sections, task, etc. directives.

Parallel regions can be nested.

Parallel regions

 Example

#pragma omp parallel private(iam, np)

{

np = omp_get num threads();

iam = omp_get thread num();

printf("Hello from thread %d out of %d\n",
iam, np);

* All threadsin parallelregion run this code.

e iamand np are privatevariables (i.e. instance of variable for
each thread).

e« omp_get num _threads() returnsthe number of threads
n in the team used for the parallel region.

« omp_get thread num() returnsthreadnumber
(identity) in range 0 to n-1 with masterthread 0.

* Messages printed in arbitraryorder.

Schedule clause

Used for assigning iterations of parallel for to threads.
schedule(static[, chunk])

* Each thread gets a chunk of iterations of size “chunk” — by default
chunks approximately equal.

* Chunks assigned in round robin order.

schedule(dynamic[,chunk])

* Each time a thread finishes its iterations, grabs “chunks” more
iterations, until all have been executed — default is 1.

* Dynamic scheduling has some overhead, but can result in better load
balancing if iterations not all equal sized.

schedule(guided[, chunk])

* Each thread dynamically grabs iterations where the size starts large
and shrinks down to “chunk”.

* Dynamic load balancing with less overhead.

schedule(runtime)

e Schedule type and chunk size taken from the OMP_SCHEDULE
environment variable.

Different ways to parallelize

// sequential

for (i=0; i<N; i++) {
a[i] = a[i] + b[i];

}

// create parallel region
// then do worksharing

#pragma omp parallel {
#pragma omp for
for (i =0; 1 < N; i++) {
a[i] = a[i] + b[i];
}

// manual parallelization

#pragma omp parallel {
int id, i, Nthreads, start, end;
id = omp_get_thread_num();
Nthreads = omp_get num_threads();
start = id * N / Nthreads;
end = (id + 1) * N / Nthreads;
for (i = start; i < end; i++) {

a[i] = a[i] + b[i];

}

// threads do redundant work

#pragma omp parallel {

// create parallel region and do
//worksharing together

#pragma omp parallel for schedule(static)

for (i = 0; 1 < N; i++) {
a[i] = a[i] + b[i];
¥

for (i = ©; i < Nj i++) {
a[i] = a[i] + b[i];
}

a)

// Set elementiofarrtoi
#fpragma omp parallel
(inti=0;i<n;i++)

arr[i] =1i;
Sometimes incorrect Always incorrect Slower than serial Faster than serial
b)
// Set arr to be an array of Fibonacci numbers.
arr[0] = 0O;
arr[1] = 1;

#pragma omp parallel for
for (inti=2;i<n;i++)
arr[i] = arr[i-1] + arr[i - 2];

Sometimes incorrect Always incorrect Slower than serial Faster than serial

c)
// Set all elements in arr to O;
inti;
#pragma omp parallel for
for (i=0;i<n;i++)

arr[i] =0;

Sometimes incorrect Always incorrect Slower than serial Faster than serial

dNswer

a)
// Set elementiofarrtoi
#pragma omp parallel
(inti=0;i<n;i++)

arrli] =1i;

Sometimes incorrect Always incorrect Slower than serial Faster than serial

Slower than serial - there is no for directive, so every thread executes this loop in its entirety. n threads running n loops at
the same time will actually execute in the same time as 1 thread running 1 loop. Despite the possibility of false sharing, the
values should all be correct at the end of the loop. Furthermore, the existence of parallel overhead due to the extra number
of threads could slow down the execution time.

dNswer

b)
// Set arr to be an array of Fibonacci numbers.
arr[0] = 0;
arr[1] = 1;
#pragma omp parallel for
for (inti=2;i<n;i++)
arr[i] = arr[i-1] + arr[i - 2];

Sometimes incorrect Always incorrect Slower than serial Faster than serial

Always incorrect (if n>4) — Loop has data dependencies, so the calculation of all threads but the first one will depend on
data from the previous thread. Because we said “assume no thread will complete before another thread starts executing,”
then this code will always be wrong from reading incorrect values.

dNswer

c)
// Set all elements in arr to 0;
inti;
#pragma omp parallel for
for (i=0;i<n;i++)
arr[i] = 0;

Sometimes incorrect Always incorrect Slower than serial Faster than serial

Faster than serial = the for directive actually automatically makes loop variables (such as the index) private, so this will work
properly. The for directive splits up the iterations of the loop into continuous chunks for each thread, so no data

dependencies or false sharing.

Cache coherence

// Decrements element i of arr. n is a multiple of omp_get_num_threads()
#pragma omp parallel

{ int threadCount = omp_get_num_threads();
int myThread = omp_get_thread _num();
for (inti=0;i<n;i++){

if (i % threadCount == myThread)
arr(i] *= arr[i];
}
}

What potential issue can arise from this code?

dNswer

// Decrements element i of arr. n is a multiple of omp_get_num_threads()
#pragma omp parallel

{ int threadCount = omp_get_num_threads();
int myThread = omp_get_thread_num();
for (inti=0;i<n;i++){

if (i % threadCount == myThread)
arr[i] *= arr[i];
}
}

What potential issue can arise from this code?

False sharing arises because different threads can modify elements located in the same memory block
simultaneously. This is a problem because some threads may have incorrect values in their cache block
when they modify the value arr[i], invalidating the cache block. A fix to this will be discussed in lab.

3. Consider the following function:

void transferFunds(struct account *from, struct account *to, long cents) {
from->cents -= cents;
to->cents += cents,;

a. What are some data races that could occur if this function is called simultaneously from two (or
more) threads on the same accounts? (Hint: If the problem isn't obvious, translate the function into

MIPS first)

b. How could you fix or avoid these races? Can you do this without hardware support?

dNswer

a. What are some data races that could occur if this function is called simultaneously from two (or
more) threads on the same accounts? (Hint: If the problem isn't obvious, translate the function into
MIPS first)

Each thread needs to read the “current” value, perform an add/sub, and store a value for from-
>cents and to->cents. Two threads could read the same “current” value and the later store essentially
overwrites the other transaction at either line.

b. How could you fix or avoid these races? Can you do this without hardware support?

Wrap transferFunds in a critical section, or divide up the accounts array and for loop in a way
that you can have separate threads work on different accounts

