
Computer Architecture I Final June 15 2017

Computer Architecture I Final

Chinese Name:

Pinyin Name:

E-Mail ... @shanghaitech.edu.cn:

Question Points Score

1 1

2 44

3 18

4 18

5 15

6 20

7 19

8 15

Total: 150

• This test contains 14 numbered pages, in-
cluding the cover page, printed on both
sides of the sheet.

• We will use gradescope for grading, so
only answers filled in at the obvious
places will be used.

• Use the provided blank paper for calcula-
tions and then copy your answer here.

• Please turn off all cell phones, smart-
watches, and other mobile devices. Re-
move all hats and headphones. Put every-
thing in your backpack. Place your back-
packs, laptops and jackets out of reach.

• You have 120 minutes to complete this exam. The exam is closed book; no computers,
phones, or calculators are allowed. You may use three A4 pages (front and back) of hand-
written notes in addition to the provided green sheet (one of those can be printed).

• The estimated time needed for each of the 7 topics is given in parenthesis - it is 36 minutes
for question 1 (Various Questions) and about 15 minutes for each of the 6 others. The total
estimated time is 120 minutes.

• There may be partial credit for incomplete answers; write as much of the solution as you
can. We will deduct points if your solution is far more complicated than necessary. When
we provide a blank, please fit your answer within the space provided.

• Do NOT start reading the questions/ open the exam until we tell you so!

• Unless otherwise stated, always assume a 32 bit machine for this exam.

1.1 First Task (worth one point): Fill in you name
Fill in your name and email on the front page and your ShanghaiTech email on top of every
page (without @shanghaitech.edu.cn) (so write your email in total 14 times).

Email: Final, Page 2 of 14 Computer Architecture I 2017

2. Various Questions (36 minutes)

(a)5 This subquestion involves T / F questions. Incorrect answers on T / F questions are pe-
nalized with negative credit. Circle the correct answer.

T / F : ECC provides protection from disk failures.
T / F : A single parity bit allows us to detect any bit errors we have, but we need Hamming
ECC (or something similar) to correct them.
T / F : All RAID configurations improve reliability.
T / F : All RAID configurations improve performance.
T / F : MapReduce is intended to run on a single, multi-core machine.
T / F : Exceptions in early pipeline stages override exceptions in later stages for a given
instruction.
T / F : Exceptions are handled in the pipeline stage where they occur.
T / F : PUE does not measure the power efficiency of Warehouse Scale Computer servers.
T / F : Amdahl’s law is restricting the speed increase predicted by Moore’s Law.
T / F : We can implement the atomic test-and-set operation in MIPS using lw and sw.

(b)3 Consider attaching a hard disk to a CPU. Should we use polling or interrupts to deal with
the hard disk? Should we use a DMA engine? Explain.

(c)3 What does AMAT stand for and how is it defined?

(d)6 For a single, running process, where in memory are the heap, stack, code and static
data located? For each memory types, write if they can (typically) change in size and if
so, how do they grow.

Email: Final, Page 3 of 14 Computer Architecture I 2017

(e)2 Do different processes have (typically) access to each other’s memory (Yes/ No). What
is the name of the technique that is responsible for this?

(e)

(f)3 What does TLB stand for and what does it do?

(f)

(g)3 What are the advantages and disadvantages between using a static library and a dynami-
cally linked library?

(g)

(h)6 Briefly explain what happens between switching on a computer and it being fully started
up (4 keywords and very brief explanations for each).

(h)

(i)2 Which of the following can increase the availability?
a. Increasing MTTF
b. Decreasing MTTF
c. Increasing MTTR
d. Decreasing MTTR
e. Redundant data copies

(i)

Email: Final, Page 4 of 14 Computer Architecture I 2017

(j)2 Explain very briefly why RAID1 is the most expensive form of RAID.

(j)

(k)2 Represent the following decimal number using 2’s complement:

-68(dec) = 0x = 0b

(l)2 Using IEEE 754 representation, what decimal number is encoded?

0xC2C00000 =

(m)1 We represent an unsigned integer. What decimal number is encoded? You may use the
size prefixes for memory (MIPS Green Sheet).

0xC0000000 =

(n)4 Consider the truth table below. On the right side, first extract the ”Sum of Products” from
the table. Afterwards simplify it.

A B C D X
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0

Email: Final, Page 5 of 14 Computer Architecture I 2017

3. C Programming (15 minutes)

(a)7 The following function should allocate space for a new string, copy the string from the
passed argument into the new string, and convert every lower-case character in the new
string into an upper-case character. Fill in the blanks and the body of the for() loop. You
may not declare any new variable.

char* upcase(char* str){
char* p;
char* result;

result =

for(
{

}
return result;

}

(b)3 Please explain what a dangling pointer is:

(c)3 Please correct the following program by writing the correct version on the right side:

swap(int* p1, int* p2)
{

int *p;

*p = *p1;

*p1 = *p2;

*p2 = *p;
}

Email: Final, Page 6 of 14 Computer Architecture I 2017

(d)1 The system program that combines separately compiled modules of a program into a form
suitable for execution is called:
A. Assembler
B. Loader
C. Linker
D. None of the Above

(d)

(e)1 Which flag would you put in a compilation command (e.g. gcc) to include debugging
information?
A. -o
B. d
C. g
D. debug

(e)

(f)1 At the end of the compiling stage, the symbol table contains the of each symbol.
A. relative address
B. absolute address
C. the stack segment beginning address
D. the global segment beginning address

(f)

(g)1 beq and bne instructions produce and they .
A. PC-relative addressing, never relocate
B. PC-relative addressing, always relocate
C. Absolute addressing, never relocate
D. Absolute addressing, always relocate

(g)

(h)1 j and jal instructions add symbols and to .
A. instruction addresses, the symbol table
B. symbol addresses, the symbol table
C. instruction addresses, the relocation table
D. symbol addresses, the relocation table

(h)

Email: Final, Page 7 of 14 Computer Architecture I 2017

4. MIPS & C programming (12 minutes)

Consider a list with nodes defined in C as follows:

struct ListNode {
char name[6];
int code[3];
struct ListNode* next;

};

The diagram below, not drawn to scale, gives an example of such a list.

(a)5 Assume that register $a0 contains a pointer to the first node of the list. Write a MIPS
assembly language function called getty1 that returns (in $v0) with the second integer
in the second node in the list (with the list pictured above, this will load a 5 into $v0).
You don’t need to do any error checking (assume node is existing). Adhere to the standard
MIPS programming conventions but be as brief as possible!

(b)6 Again assume that register $a0 contains a pointer to the first node of the list. Write a MIPS
assembly language function called getty2 that returns (in $v1) the fourth character in
the third node in the list (with the list pictured above, this will load ’n’ into $v1). Again,
you don’t need to do any error checking (assume node is existing and string long enough).
Adhere to the standard MIPS programming conventions but be as brief as possible!

Email: Final, Page 8 of 14 Computer Architecture I 2017

(c)7 Read and understand the following MIPS assembly code. Then translate this function
into C code.Your answers should be as concise as possible. The parameter x in register
$a0 is an unsigned int.

##
BitCount
$a0 = x, $v0 = return value
##
BitCount:

addi $sp, $sp, -8
sw $ra, 4($sp)
sw $s0, 0($sp)
add $v0, $0, $0
beq $a0, $0, end
andi $s0, $a0, 1
srl $a0, $a0, 1
jal BitCount
add $v0, $v0, $s0

end:
lw $ra, 4($sp)
lw $s0, 0($sp)
addi $sp, $sp, 8
jr $ra

Email: Final, Page 9 of 14 Computer Architecture I 2017

5. SDS (12 minutes)

(a)5 Consider the following circuit, the delay is 50 ns for the NOT gate and 40 ns for the rest
of the logic gates. The register has 30 ns setup time, 30 ns clk-to-q delay and 10 ns hold
time. Please calculate the maximum clock frequency for this circuit.

(a)
(b)4 Write the C expression of the following circuit (e.g. output = (X&Y)).

(b)
(c)6 Draw the Timing Diagram for the circuit below. The delay for any logic is 10 ns, the

setup time and hold time can be ignored. The clock-to-q delay for a register is also 10 ns.
Each clock cycle is 30 ns (updated to 60 ns on the whiteboard), each grid in the following
diagram is a unit of 10 ns (output is initially high).

Email: Final, Page 10 of 14 Computer Architecture I 2017

6. MIPS CPU & Performance Analysis (15 minutes)

Consider the following new instruction: jals $rt $rs imm. The instruction stores PC + 4 in
register $rt. At the same time, it sets the PC to the value in register $rs offset by the sign-
extended imm value.

(a)3 Write the register transfer language (RTL) corresponding to jals

(b)5 Change as little as possible in the 1-stage datapath below to support jals. In case of ties,
pick the set of changes that maximizes the number of control signals that can be set to
”don’t care”. Draw your changes directly in the diagram or describe your changes below.
You may only add multiplexers, wires, splitters, tunnels, adders, and add or modify con-
trol signals.

Describe your changes below:

(c)4 We now want to set the control lines appropriately. List what each signal should be, either
by an intuitive name or 0,1,”don’t care”, etc.. Include any new control signals you added.

RegDst RegWr nPC sel ExtOp ALUSrc ALUctr MemWr MemtoReg

Email: Final, Page 11 of 14 Computer Architecture I 2017

(d) The following questions are base on the CPU we learned in class. First let’s recall clock-
ing methodology.

• The input signal to each state element must stabilize before each rising edge.
• Critical path: Longest delay path between state elements in the circuit.
• tclk > tclk−to−q + tCL + tsetup, where tCL is the critical path in the combinational

logic.
• If we place registers in the critical path, we can shorten the period by reducing the

amount of logic between registers.

The delays of circuit elements are given as follows:

Element Register
clk-to-q

Register
Setup

MUX ALU Mem
Read

Mem
Write

RegFile
Read

RegFile
Setup

Parameter tclk−to−q tsetup tmux tALU tMEMread tMEMwrite tRFread tRFsetup

Delay(ps) 30 20 25 200 250 200 150 20

(e)1 What instruction exercises the critical path?

(e)

(f)3 What are the minimum clock cycle, tclk? Provide the formula/ details for partial credit.

(f)

(g)2 Why is a single cycle CPU inefficient?

(g)

(h)2 How can you improve its performance?

(h)

Email: Final, Page 12 of 14 Computer Architecture I 2017

7. Parallel Programming (15 minutes)

Read the following C code for matrix addition.

void matadd (float * A, float * B, float * C, int n){
for(int i = 0; i < n; i++){

for(int j = 0; j < n; j++){
A[j*n+i] = B[j*n+i] + C[j*n+i];

}
}

}

Assume no compiler optimizations are applied and big values for n. We can easily see that
this piece of code is not optimal. As a computer science student, it is your job to optimize this
code to improve efficiency. Answer the following questions:

(a)2 There is a very obvious error in one line that is slowing down the program a lot. What is
this error? Explain why it is slowing down the program so much.

(a)

(b)4 Restructure the code using loop unrolling. Also correct the error you identified in the
above task. Use 4 statements per iteration. You may assume that n is dividable by 4.
void matadd (float * A, float * B, float * C, int n){

(c)4 Optimize this code further with OpenMP (no explicit loop unrolling in this task!).
void matadd (float * A, float * B, float * C, int n){

Email: Final, Page 13 of 14 Computer Architecture I 2017

(d)5 Use SSE intrinsics to utilize SIMD instructions on modern processors. (Do not use
OpenMP here.) Hint: You might need the following intrinsics:
__m128 _mm_add_ps (__m128 a, __m128 b)

__m128 _mm_load_ps (float const* mem_addr)

void _mm_store_ps (float* mem_addr, __m128 a)

void matadd (float * A, float * B, float * C, int n){

(e)2 Amdal’s Law: Suppose that we’ve developed a new method that can run 3 times faster in
60% of the instructions. What is the overall speedup?

(f)2 Amdal’s Law: Suppose that we can run n times faster in 60% of the instructions. What is
the maximum overall speedup that we can achieve?

8. Memory Access (15 minutes)

Consider a 32-bit physical memory space and a 32 KiB 4-way associative cache with LRU
replacement. You are told that the hit rate of loop two is 9/16.

int ARRAY_SIZE = 32 * 1024;
int arr[ARRAY_SIZE]; // *arr is aligned to a cache block

/* loop one */
for (int i = 0; i < ARRAY_SIZE; i += 4) arr[i] = i;
/* loop two */
for (int i = ARRAY_SIZE - 4; i >= 0; i -= 4) arr[i+1] = arr[i]-1;

(a)4 Fill the number of bits in the tag, index and offset fields in the figure below.

Tag Index Offset

Email: Final, Page 14 of 14 Computer Architecture I 2017

(b) It’s Not My Fault
Consider the following OpenMP snippet:

int values[size];
#pragma omp parallel
{

int i = omp_get_thread_num();
int n = omp_get_num_threads();
for(int j = i * (size / n); j < (i + 1) * (size / n); j++){

values[j] = j;
}

}

All cores share the same physical memory and we are running 2 threads. This is the sole
process running. Each page is 1 KiB, and you have 2 pages of physical memory. The code
snippet above starts at virtual address 0x400, and the values array starts at 0x800. The
size, n, i, and j variables are all stored in registers. The functions omp get thread num and
omp get num threads are stored in virtual addresses 0x440 to 0x480. The replacement
policy for the page table is Least Recently Used.
At the start of the pragma omp parallel call the page table looks as follows:

Virtual
Page

Number

Valid Dirty Physical
Page

Number
0 0 0 0
1 1 0 0
2 1 1 1
3 0 0 1

(c)3 How many page faults will occur if size=0x080?

(c)
(d)5 What is the minimum number of page faults that will occur if size=0x200? And what is

the maximum?

(d)
(e)3 How could you reduce the maximum page faults for part (b) (updated to (d))?

Choose the valid options amongst the following (- 1 pt for every incorrect answer):
1. increase virtual address space
2. decrease number of threads
3. increase number of threads
4. use SIMD instructions
5. change page table replacement policy to Random
6. increase physical address space
7. add a 4-entry TLB

(e)

