CS 110
Computer Architecture
(a.k.a. Machine Structures)
Lecture 1: Course Introduction

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Agenda

Thinking about Machine Structures
Great Ideas in Computer Architecture
What you need to know about this class
Everything is a Number

Agenda

Thinking about Machine Structures
Great Ideas in Computer Architecture
What you need to know about this class
Everything is a Number

Most Popular Programming Languages

2016-7
o \ﬁ Language Rank Types Spectrum Ranking
Ve @
Pac Qw8 R
T EE
4 Ot = @
so @0 me
x S
rsesan @0 BSL
s ® BAL
THEEEE
DY e

Ratings (%)

30

25

20

15

10

TIOBE Programming Community Index
Source: www.tiobe.com

== Java

= C
C++
Y == Python
|/ * " "\ 4 — C#
== Visual Basic .NET
PHP
== JavaScript
== Delphi/Object Pascal

Ruby

2002 2004 2006 2008 2010 2012 2014 2016 2018

Why You Need to Learn C!

CS 110 is NOT really about C
Programming

* |tis about the hardware-software interface

— What does the programmer need to know to
achieve the highest possible performance

* Cis close to the underlying hardware, unlike
languages like Rust, Python, Java!

— Allows us to talk about key hardware features in
higher level terms

— Allows programmer to explicitly harness
underlying hardware parallelism for higher
performance and power efficiency

Old School Computer Architecture

-

N

use /3

first working programmable, fully automatic digital computer
by Konrad Zuse in Berlin, 1941 (Inventor of Computer)

New School Computer Architecture (2/3)

Personal
Mobile
Devices

Network
Edge
Devices

10

warehouse-scale -~
computer . | power substation L7

. ——

—

-*.

11

e e - ar -

. ‘ 'I‘ 'lb."“ = “. "l' b r.
br sy \”5".’ !‘i"bl - l....h...

. ® r) s : . o
W v @ v A Wi B Y UL F 3 v AT
2 h L R AR B WP VY TN
n . u, B od B v - - . - - i -
a V..C.-L ;mr Gv :l fm.nb ; . i.Liwh...ﬁ

- - . - .\-hl Ve Y
/ » 1 & : X
it Sy p.' .“. !.'\IF ~roma o 'y .rl.n.h.h -

e P .\l‘\‘. s
._u.

-. W M . ,v. .rv '.. > -4 -a‘m \' 1\ . ‘ d»‘n-- .Jo. ﬂ...DO ~“r 0‘ '3 :
> ras TGRS T TS . .‘
SRR oie U'.l.‘»!."\-,‘dua .1|‘
.\.QN- . - § | i B\).0
- ‘ «lﬂ‘v h \." r' .‘ml.‘ d L 3 -.-l‘r AAH. '\..w.
£ B Y P T, - > - - -
. . - vy i - L B\ NS Y N\
51 d A -"nv ’ud T e J.W‘ S R R
! v A e . . .

‘”l Qu. .—- ‘— ..— C -

Old School Machine Structures

Application (ex: browser)

A :
Operating—
Compiler System
Software Assembler {Mac 15K)

Instruction Set
Architecture

Hardware Processor Memory |1/0 system

I Datapath & Control

v Digital Design

Circuit Design

transistors

13

New-School Machine Structures

(It's a bi

t more compllcatedl)

Software Hardware
Parallel Requests
. Warehouse
Assigned to computer Scale B
e.g., Search “cats” Computer &
Harness
Parallel Threads Parallelism &
Assigned to core Achieve High s
i olect
e.g., Lookup, Ads Performance ’ e Computer” e
Parallel Instructions Core ~ |.. .="Core Z‘/\
. . . ,f‘ \
>1 instruction @ one time Memory _.-1" (Cache) Projagt 3
e.g., 5 pipelined instructions - \
nE),ut»/Output Core \\
Parallel Data , TRy)
Lt : unctiona
>1 data item @ one time nstruction Unit(s) Unit(s)
e.g., Add of 4 pairs of words ﬁ«:ﬂ /K+BO/A/ +B]/A/ +B% +2;
Hardware descriptions — — :
L Main Memory Rl H
All gates functioning in — [
parallel at same time =1 Logic Gates
: D Project 2

Meltdown and Spectre

Hardware vulnerability ({}
Affecting Intel x86 microprocessors, '®

IBM POWER processors, and some

ARM-based microprocessors SPECTRE

All Operating Systems effected!
They are considered "catastrophic" by security analysts!

Allow to read all memory (e.g. from other process or other
Virtual Machines (e.g. other users data on Amazon cloud
servicel!))

Towards the end of this CA course you can understand the
basics of how Meltdown and Spectre work. Keywords:

— Virtual Memory; Protection Levels; Instruction Pipelining;
Speculative Execution; CPU Caching; 15

Agenda

* Great Ideas in Computer Architecture

16

6 Great Ideas in Computer Architecture

1. Abstraction

(Layers of Representation/Interpretation)

2. Moore’s Law (Designing through trends)

3.

Principle of Locality (Memory Hierarchy)

. Parallelism

Performance Measurement & Improvement

4
5.
6. Dependability via Redundancy

17

Great Idea #1: Abstraction
(Levels of Representation/Interpretation)

Python / Application

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

~ —

Physics

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw St0, 0(S2)
lw Stl, 4(52)
sw $t1,0(S2)
sw StO0, 4(S2)

0000 1001 1100
1010 1111 0101
1100 0110 1010
0101 1000 0000

1]

Register File

ALU
I

Anything can be represented
as a number,
i.e., data or instructions

0110
1000
1111
1001

1010 1111 0101
0000 1001 1100
0101 1000 0000
1100 0110 1010

v 0

1000
0110
1001
1111

2: Moore’s Law

1013
HUMAN
v BRAIN
ELECTROMECHANICAL SOLID- VACUUM TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
o RELAY
MOUSE
CORE i7 QUAD) BRAIN
101 = =2 O
Predicts: PENTIUM 4 Q’coneznuo
. . PENTIUM Il '
100 [2X Transistors / chip PENTIUM I Semeal,
COMPAQ DNA
DESKPRO 386 COMPUTING?
o b every 2 years - & Tl
ALTAIR 8800 ‘ PENTIUM

10¢ = T PDP.:BM B ‘: QIBM AT-80286
o 35

CALCULATOINS PER SECOND PER $1000

UNIVAC | @ ©occ APPLEN
‘ PDP-10
0 (| | 1 | | | 1 1 | 1 | | 1 | 1 | 1
COLOSSUS
IBM IBM 704
HOLLERITH »
TABULATOR :
Ly A
10 € natonNa CALCULATOR Gordon Moore
ELLIS 3000 MODEL 1
ANALYTICAL ENGINE Intel Cofounder
g 22 2 88 8 8 § $8 8 8 2 8 £ 88§ 5 828¢2 258 8
¢ 22 2 282 &8 @8 & ¢ ¢ ¢ & 2 ¥ & 2288 3 3% & S8

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 1
2012 REPRESENT BCA ESTIMATES. 9

Interesting Times

Moore’s Law relied on the cost of

transistors scaling down as
technology scaled to smaller and
smaller feature sizes.

BUT newest, smallest fabrication
processes <10nm, might have
greater cost/transistor !!!!

So, why shrink????

[RIP

Moore’s £aw
1965-20207?

20

Jim Gray’s Storage Latency Analogy:
How Far Away is the Data?

Andromeda
109 Tape /Optical % 2,000 Years
Robot .
Jim Gray
Turing Award
10® HardDisk Pluto 2 Years
. 1.5 hr
100 Main Memory Suzhou
B
< <
10 OnBoard Cache —TIhis Campus 10 min
2 On Chip Cache This Room

1 Regqisters fMy Head 1 min
(ns)

Great Idea #3: Principle of Locality/

Memory Hierarchy

EXPENSIVE

Processor SUPER FAST
SUPER EXPENSIVE
. TINY CAPACITY
/m FASTER
, LEVEL 1 (L1) CACHE

Y

SMALL CAPACITY

EDO, SD-RAM, DDR-SDRAM, RD-RAM , PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY
SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
\ PRICED REASONABLY
4 \\ AVERAGE CAPACITY

£

y N

Mechanical Hard Drives VIRTUAL MEMORY

N
N

SLOW
CHEAP
LARGE CAPACTITY

,- s] \

Great Idea #4: Parallelism

Jane

Research

Composing Typing

<

Sue

Research

Composing Typing

Tom

<

_— -
— —

Research

Composing Typing

<

NN NE NN NN

IININININENE NN

1

N
w

Caveat: Amdahl’s Law

100
- Performance =
increaseratio x4 ——
x: Ratio of code that must be =501 (550 (RG] [580 oo 17
executed sequentially core | |core | |cora | | core 22nm 2
2 N: Number of CPU cores cpu|[cpul [cpul [cPU
S Ccore | |Core | |Core | | core -
@ —
- CPU | CPU 32nm -
g core | core
£ 10 CPU | CPU
% core | core)_(=1 0%
— 45nm e
E o il —
5 i pode e BB e X=20%—|
3
o
CPU
core X=50%
90nm

1|

No significant throughput improvement if ratio
of code that can be executed in parallel is low

2003 2004 2005 2006 2007 2008

Fig 3 Amdahl’s Law an Obstacle to Improved Performance Performance will not rise in
the same proportion as the increase in CPU cores. Performance gains are limited by the ratio
of software processing that must be executed sequentially. Amdahl’s Law is a major obstacle
in boosting multicore microprocessor performance. Diagram assumes no overhead in parallel
processing. Years shown for design rules based on Intel planned and actual technology. Core

2009

count assumed to double for each rule generation.

2010

2011 2012

2013 2014

Gene Amdahl
Computer Pioneer

24

Great Idea #5: Performance
Measurement and Improvement

* Tuning application to underlying hardware to
exploit:
— Locality
— Parallelism
— Special hardware features, like specialized instructions
(e.g., matrix manipulation)
* Latency
— How long to set the problem up
— How much faster does it execute once it gets going
— It is all about time to finish

25

Coping with Failures

e 4 disks/server, 50,000 servers
* Failure rate of disks: 2% to 10% / year

— Assume 4% annual failure rate

* On average, how often does a disk fail?

a) 1/ month
c) 1/day 200,000 x 4% = 8000 disks fail

d) 1/ hour 365 days x 24 hours = 8760 hours

26

NASA Fixing Rover’s Flash Memory

Opportunity still active
on Mars after >10 years

But flash memory worn
out

Software update to
avoid using worn out
memory banks

http://www.engadget.com/2014/12/30/nasa-opportunity-rover-flash-fix/
27

Great |dea #6:
Dependability via Redundancy

* Redundancy so that a failing piece doesn’t
make the whole system fail

2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy
28

Great |dea #6:
Dependability via Redundancy

* Applies to everything from datacenters to storage to
memory to instructors

— Redundant datacenters so that can lose 1 datacenter but
Internet service stays online

— Redundant disks so that can lose 1 disk but not lose data
(Redundant Arrays of Independent Disks/RAID)

— Redundant memory bits of so that can lose 1 bit but no data
(Error Correcting Code/ECC Memory)

- ~ . c
.......
~

29

Agenda

 What you need to know about this class

30

Computer Architecture

 You are all CS students?

 CAis your most important course this semester!
— 6 credit points
— Your first CS only course

— Spend a LOT of time on:
* Textbook reading before class
* HW and projects
e Lab preparation
e Learning for mid-terms and final
— Understand how computers really work — complicated!
* Too complicated? => Change major...

* DSisimportant, too — but also for EE students ;)

31

Weekly Schedule

Lecture Tuesday, 10:15-11:55. 27 .[» (Teaching Center) 303
Lecture Thursday, 10:15-11:55. Z{=%=.[» (Teaching Center) 303

Discussions Wednesday 19:35-21:15

Lab 1 Monday, 13:00-14:40. SIST 1B-106; TA: tbhd.
Lab 2 Monday, 15:00-16:40. SIST 1B-106; TA: tbhd.
Lab 3 Tuesday, 13:00-14:40. SIST 1B-106; TA: thd.
Lab 4 Tuesday 19:35 - 21:15 TA: tbd.

Lab 5 Thursday, 13:00-14:40. SIST 1B-106; TA: thd.

Lab 6 Thursday 19:35 —21:15 TA: tbhd.

32

Alternative Lab Slots 4 & 6

* Lab 4 (original Tuesday, 15:00-16:40):
— Tuesday 19:35-21:15

e Lab 6 (original Thursday, 15:00-16:40):
— Thursday 19:35 - 21:15

* Discussion Wednesday 19:35 - 21:15

33

Course Information

Course Web: http://shtech.org/course/ca/

Acknowledgement: Instructors of UC Berkeley’s CS61C:
http://www-inst.eecs.berkeley.edu/~cs61c/

Instructor:
— Soren Schwertfeger

Teaching Assistants: (see webpage)

Textbooks: Average 15 pages of reading/week

— Patterson & Hennessey, Computer Organization and Design, 5™ Edition
(Chinese version is 4th edition — significant differences!)

— Kernighan & Ritchie, The C Programming Language, 2" Edition
— Barroso & Holzle, The Datacenter as a Computer, 2" Edition

Piazza:
— Every announcement, discussion, clarification happens there

34

Course Grading

Projects: 33%
Homework: 17%
Lab: 5%

Exams: 40%

— Midterm 1: 10%
— Midterm 2: 10%
— Final: 20%
Participation: 5%

— (in class, in piazza, non credit parts of HW/ projects,
help other during labs)

35

AUTUYLAB

* CA will use Autolab for grading

— Experimental setup - first use @ShanghaiTech

* => Please be patient and report any bugs/ problems in
piazza or (if sensitive) via email.

— Update your hosts file:
* https://en.wikipedia.org/wiki/Hosts (file)
e Add:
* 10.19.124.103 autolab.shanghaitech.edu.cn

— Will only be available on campus!
— Your logins will be created soon!
— http://autolab.shanghaitech.edu.cn

36

Late Policy ... Slip Days!

Assignments due at 11:59:59 PM
You have 3 slip day tokens (NOT hour or min)

Every day your project or homework is late (even
by a minute) we deduct a token

After you’ve used up all tokens, it’s 25% deducted
per day.

— No credit if more than 3 days late
— Save your tokens for projects, worth more!!

No need for sob stories, just use a slip day!
Autolab will take care of this!

Policy on Assignments and Independent Work

ALL PROJECTS WILL BE DONE INDIVIDUALLY

With the exception of laboratories and assignments that explicitly permit you to work in
groups, all homework and projects are to be YOUR work and your work ALONE.

PARTNER TEAMS MAY NOT WORK WITH OTHER PARTNER TEAMS

You can discuss your assignments with other students, and credit will be assigned to
students who help others by answering questions on Piazza (participation), but we expect
that what you hand in is yours.

Level of detail allowed to discuss with other students: Concepts (Material taught in the
class/ in the text book)! Pseudocode is NOT allowed!

Use the Office Hours of the TA and the Prof. if you need help with your homework/
project!

Rather submit an incomplete homework with maybe 0 points than risking an F!

It is NOT acceptable to copy solutions from other students.

You can never look at homework/ project code not by you/ your team!

You cannot give your code to anybody else —> secure your computer when not around it
It is NOT acceptable to copy (or start your) solutions from the Web.

It is NOT acceptable to use PUBLIC github archives (giving your answers away)

We have tools and methods, developed over many years, for detecting this. You WILL be
caught, and the penalties WILL be severe.

At the minimum F in the course, and a letter to your university record documenting the
incidence of cheating.

Both Giver and Receiver are equally culpable and suffer equal penalties

38

Labs & HW1

* Labs: Find one partner for your lab-work from
you lab class!

— Labs start next week

— Projects are done individually this year!
* HW1 will be posted this week.

Architecture of a typical Lecture

[lBreak
Full - —
\ o .
. Administrivia Fun/News And in
Attention conclusion
Y S W
10 30 45 75 100

Time (minutes)

40

Agenda

Thinking about Machine Structures
Great Ideas in Computer Architecture
What you need to know about this class
Everything is a Number

41

Key Concepts

* |[nside computers, everything is a number

 But numbers usually stored with a fixed size
— 8-bit bytes, 16-bit half words, 32-bit words, 64-bit
double words, ...
* Integer and floating-point operations can lead
to results too big/small to store within their
representations: overflow/underflow

Number Representation

* Value of i-th digit is d x Base' where i starts at O
and increases from right to left:
e 123,,=1,,x10,42 +2,, x 10, + 3,,x 10,°
= 1x100,, + 2x10,, + 3x1,,
=100, + 20,5 + 34
=123,
e Binary (Base 2), Hexadecimal (Base 16), Decimal
(Base 10) different ways to represent an integer

— Weuse 1, 5., 10,., to be clearer
(vs.1,, 4, 550 104)

43

Number Representation

Hexadecimal digits:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

FFFpex = 150X 16002 + 150X 16¢,1 + 15X 16,0
=3840,,, + 240,,, + 15,
= 4095

ten

1111 1111 1111, = FFF, ., = 4095

May put blanks every group of binary, octal, or
hexadecimal digits to make it easier to parse, like
commas in decimal

two ten

Sighed and Unsigned Integers

C, C++, and Java have signed integers, e.g., 7, -255:

int x, v, Z;

C, C++ also have unsigned integers, e.g. for
addresses

32-bit word can represent 23% binary numbers

Unsigned integers in 32 bit word represent
0 to 23%-1 (4,294,967,295) (4 Gig)

45

Unsigned Integers

0000 0000 0000 0000 0000 0000 0000 0000;,,, = O,
0000 0000 0000 0000 0000 0000 0000 0001,,,, = 1.,
0000 0000 0000 0000 0000 0000 0000 0010,,,, =2

two ten

01111111111117111171111111 11111101
0111111111111711111111111 11111110
01111111111117111171111111 11111111
1000 0000 0000 0000 0000 0000 0000 0000
1000 0000 0000 0000 0000 0000 0000 0001
1000 0000 0000 0000 0000 0000 0000 0010

=2,147,483,645
=2,147,483,646
=2,147,483,647
=2,147,483,648
=2,147,483,649
=2,147,483,650

two ten

two ten
two ten
two ten
two ten

two ten

1111111711111 1111171711 1111 17111 1101
11111111 111111711 1111171111111 1110
1111111111711 171171 711711171171 1111 1111

=4,294,967,293
=4,294,967,294
=4,294,967,295

two ten

two ten

two ten

Signed Integers and
Two’s-Complement Representation

Signed integers in C; want %2 numbers <0, want %
numbers >0, and want one O

Two’s complement treats 0 as positive, so 32-bit
word represents 23?integers from
-231(-2,147,483,648) to 231-1 (2,147,483,647)

— Note: one negative number with no positive version
— Book lists some other options, all of which are worse
— Every computer uses two’s complement today
Most-significant bit (leftmost) is the sign bit,

since 0 means positive (including 0), 1 means
negative

— Bit 31 is most significant, bit O is least significant

47

Sign

0
0
0

Two’s-Complement Integers

Bit
D00 0000 0000 0000 0000 0000 0000 0000,,,, = 04
D00 0000 0000 0000 0000 0000 0000 0001,,,, = 1.,
D00 0000 0000 0000 0000 0000 0000 0010,,,, = 2

two ten

11111111111 1111 11211121 1111 1101, , = 2,147,483,645

P = L, O O O

two ten
11111111111 1111 1111 1111 1111 1110, = 2,147,483,646,,,
11111111111 1111 1111 1111 1111 1111, = 2,147,483,647 .,
D00 0000 0000 0000 0000 0000 0000 0000,,,, =—2,147,483,648,.,
D00 0000 0000 0000 0000 0000 0000 0001,,,, =—2,147,483,647,.,
D00 0000 0000 0000 0000 0000 0000 0010,,,, =—2,147,483,646,,,
11111111111 1111 171111111 1111 1101, = —34.,
11111111111 111111111111 1111 1110, =2

ten

111 1111171111111 1111 1111 1111 1111, =-1

=

two — ten

48

Ways to Make Two’s Complement

* For N-bit word, complement to 2,/

— For 4 bit number 3,,,=0011,,,,, two’s complement
(i.e. -3,.,) would be
16,.,-3:.n=13,, Or 10000,,,- 0011,,, = 1101,,,
* Here is an easier way: 3., 0011,

— Invert all bits and add 1 o
Bitwise complement 1100,

- 1
— Computers actually do it like this, too 3., 1101

two

two
49

