
CS	110
Computer	Architecture	

(a.k.a.	Machine	Structures)
Lecture	1:	Course	Introduction

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	you	need	to	know	about	this	class
• Everything	is	a	Number

2

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	you	need	to	know	about	this	class
• Everything	is	a	Number

3

Most	Popular	Programming	Languages	
2016-7

• What	do	you	think	is	the	most	“popular”	
programming	language	in	use	today?

4

5

Why	You	Need	to	Learn	C!

6

CS	110	is	NOT	really	about	C	
Programming

• It	is	about	the	hardware-software	interface
– What	does	the	programmer	need	to	know	to	
achieve	the	highest	possible	performance

• C	is	close	to	the	underlying	hardware,	unlike	
languages	like	Rust,	Python,	Java!	
– Allows	us	to	talk	about	key	hardware	features	in	
higher	level	terms

– Allows	programmer	to	explicitly	harness	
underlying	hardware	parallelism	for	higher	
performance and	power efficiency

7

Old	School	Computer	Architecture

8

Zuse Z3
first	working programmable,	fully	automatic	digital	computer

by	Konrad	Zuse in	Berlin,	1941	(Inventor	of	Computer)

9

10

Personal	
Mobile	
Devices

Network
Edge

Devices

New	School	Computer	Architecture	(2/3)

New	School	Computer	
Architecture	(2/3)

11

New	School	Computer	
Architecture	(3/3)

12

Old	School	Machine	Structures

13

I/O	systemProcessor

Compiler
Operating
System
(Mac	OSX)

Application	(ex:	browser)

Digital	Design
Circuit	Design

Instruction	Set
Architecture

Datapath	&	Control	

transistors

MemoryHardware

Software Assembler

New-School	Machine	Structures
(It’s	a	bit	more	complicated!)

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“cats”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	functioning	in	

parallel	at	same	time
14

Smart
Phone

Warehouse
-Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Main	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Project	1

Project	3

Project	2

Meltdown	and	Spectre

• Hardware vulnerability
• Affecting Intel	x86	microprocessors,

IBM	POWER	processors,	and	some
ARM-based	microprocessors

• All	Operating	Systems	effected!
• They	are	considered	"catastrophic"	by	security	analysts!
• Allow	to	read	all	memory	(e.g.	from	other	process	or	other	

Virtual	Machines	(e.g.	other	users	data	on	Amazon	cloud	
service!))

• Towards	the	end	of	this	CA	course	you	can	understand	the	
basics	of	how	Meltdown	and	Spectre work.	Keywords:
– Virtual	Memory;	Protection	Levels;	Instruction	Pipelining;	

Speculative	Execution;	CPU	Caching;	 15

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	you	need	to	know	about	this	class
• Everything	is	a	Number

16

6	Great	Ideas	in	Computer	Architecture

1. Abstraction
(Layers	of	Representation/Interpretation)

2. Moore’s	Law	(Designing	through	trends)
3. Principle	of	Locality	(Memory	Hierarchy)
4. Parallelism
5. Performance	Measurement	&	Improvement
6. Dependability	via	Redundancy

17

Great	Idea	#1:	Abstraction
(Levels	of	Representation/Interpretation)

18

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

Physics

Python	/	Application

#2:	Moore’s	Law

19

Gordon	Moore
Intel	Cofounder

Predicts:	
2X	Transistors	/	chip	

every	2	years

Interesting	Times

20

Moore’s	Law	relied	on	the	cost	of	
transistors	scaling	down	as	
technology	scaled	to	smaller	and	
smaller	feature	sizes.			

BUT	newest,	smallest	fabrication	
processes	<10nm,	might	have	
greater	cost/transistor	!!!!
So,	why	shrink????

Jim	Gray’s	Storage	Latency	Analogy:		
How	Far	Away	is	the	Data?

Registers
On Chip Cache
On Board Cache

Main Memory

HardDisk

1
2

10

100

Tape /Optical
Robot

10 9

10 6

This Campus
This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

(ns)

Jim	Gray
Turing	Award

Suzhou

Great	Idea	#3:	Principle	of	Locality/
Memory	Hierarchy

2/27/18 22

Great	Idea	#4:	Parallelism

23

2/27/18 24

Caveat:	Amdahl’s	Law

Gene	Amdahl
Computer	Pioneer

Great	Idea	#5:	Performance	
Measurement	and	Improvement

• Tuning	application	to	underlying	hardware	to	
exploit:
– Locality
– Parallelism
– Special	hardware	features,	like	specialized	instructions	
(e.g.,	matrix	manipulation)

• Latency
– How	long	to	set	the	problem	up
– How	much	faster	does	it	execute	once	it	gets	going
– It	is	all	about	time	to	finish

25

Coping	with	Failures

• 4	disks/server,	50,000	servers
• Failure	rate	of	disks:	2%	to	10%	/	year

– Assume	4%	annual	failure	rate
• On	average,	how	often	does	a	disk	fail?

a) 1	/	month
b) 1	/	week
c) 1	/	day
d) 1	/	hour

26

50,000	x 4	=	200,000	disks
200,000	x 4%	=	8000	disks	fail

365	days	x 24	hours	=	8760	hours

NASA	Fixing	Rover’s	Flash	Memory

• Opportunity	still	active	
on	Mars	after	>10	years

• But	flash	memory	worn	
out

• Software	update	to	
avoid	using	worn	out	
memory	banks

27
http://www.engadget.com/2014/12/30/nasa-opportunity-rover-flash-fix/

Great	Idea	#6:	
Dependability	via	Redundancy

• Redundancy	so	that	a	failing	piece	doesn’t	
make	the	whole	system	fail

28

1+1=2 1+1=2 1+1=1

1+1=2
2	of	3	agree

FAIL!

Increasing	transistor	density	reduces	the	cost	of	redundancy

Great	Idea	#6:	
Dependability	via	Redundancy

• Applies	to	everything	from	datacenters	to	storage	to	
memory	to	instructors
– Redundant	datacenters so	that	can	lose	1	datacenter	but	
Internet	service	stays	online

– Redundant	disks so	that	can	lose	1	disk	but	not	lose	data	
(Redundant	Arrays	of	Independent	Disks/RAID)

– Redundant	memory	bits of	so	that	can	lose	1	bit	but	no	data	
(Error	Correcting	Code/ECC	Memory)

29

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	you	need	to	know	about	this	class
• Everything	is	a	Number

30

Computer	Architecture

• You	are	all	CS	students?
• CA	is	your	most	important	course	this	semester!

– 6	credit	points
– Your	first	CS	only	course
– Spend	a	LOT	of	time	on:

• Textbook	reading	before	class
• HW	and	projects
• Lab	preparation
• Learning	for	mid-terms	and	final

– Understand	how	computers	really	work	– complicated!
• Too	complicated?	=>	Change	major…

• DS	is	important,	too	– but	also	for	EE	students	;)
31

Weekly	Schedule

Lecture Tuesday,	10:15-11:55.	教学中心 (Teaching	Center)	303

Lecture Thursday,	10:15-11:55.	教学中心 (Teaching	Center)	303

Discussions Wednesday	19:35	– 21:15

Lab	1 Monday,	13:00-14:40.	SIST	1B-106;	TA:	tbd.

Lab	2 Monday,	15:00-16:40.	SIST	1B-106;	TA:	tbd.

Lab	3 Tuesday,	13:00-14:40.	SIST	1B-106;	TA:	tbd.

Lab	4 Tuesday	19:35	– 21:15	TA:	tbd.

Lab	5 Thursday,	13:00-14:40.	SIST	1B-106;	TA:	tbd.

Lab	6 Thursday	19:35	– 21:15 TA:	tbd.
32

Alternative	Lab	Slots	4	&	6

• Lab	4	(original	Tuesday,	15:00-16:40):
– Tuesday	19:35	– 21:15

• Lab	6	(original	Thursday,	15:00-16:40):
– Thursday	19:35	– 21:15

• Discussion	Wednesday	19:35	– 21:15

33

Course	Information
• Course	Web:	http://shtech.org/course/ca/
• Acknowledgement:	Instructors	of	UC	Berkeley’s	CS61C:	

http://www-inst.eecs.berkeley.edu/~cs61c/
• Instructor:	

– Sören	Schwertfeger
• Teaching	Assistants:	(see	webpage)
• Textbooks:	Average	15	pages	of	reading/week	

– Patterson	&	Hennessey,	Computer	Organization	and	Design,	5th Edition
(Chinese	version	is	4th edition	– significant	differences!)

– Kernighan	&	Ritchie,	The	C	Programming	Language,	2nd Edition
– Barroso	&	Holzle,	The	Datacenter	as	a	Computer,	2nd Edition

• Piazza:	
– Every	announcement,	discussion,	clarification	happens	there

34

Course	Grading
• Projects:	33%
• Homework:	17%
• Lab:	5%
• Exams:	40%

– Midterm	1:	10%
– Midterm	2:	10%
– Final:	20%

• Participation:	5%	
– (in	class,	in	piazza,	non	credit	parts	of	HW/	projects,	
help	other	during	labs)

35

• CA	will	use	Autolab for	grading
– Experimental	setup	- first	use	@ShanghaiTech

• =>	Please	be	patient	and	report	any	bugs/	problems	in	
piazza	or	(if	sensitive)	via	email.

– Update	your	hosts	file:
• https://en.wikipedia.org/wiki/Hosts_(file)
• Add:
• 10.19.124.103			autolab.shanghaitech.edu.cn

– Will	only	be	available	on	campus!
– Your	logins	will	be	created	soon!
– http://autolab.shanghaitech.edu.cn

36

Late	Policy	…	Slip	Days!
• Assignments	due	at	11:59:59	PM
• You	have	3 slip	day	tokens	(NOT	hour	or	min)
• Every	day	your	project	or	homework	is	late	(even	
by	a	minute)	we	deduct	a	token

• After	you’ve	used	up	all	tokens,	it’s	25%	deducted	
per	day.
– No	credit	if	more	than	3	days	late
– Save	your	tokens	for	projects,	worth	more!!

• No	need	for	sob	stories,	just	use	a	slip	day!
• Autolab will	take	care	of	this!

37

Policy	on	Assignments	and	Independent	Work
• ALL	PROJECTS	WILL	BE	DONE	INDIVIDUALLY
• With	the	exception	of	laboratories	and	assignments	that	explicitly	permit	you	to	work	in	

groups,	all	homework	and	projects	are	to	be	YOUR	work	and	your	work	ALONE.
• PARTNER	TEAMS	MAY	NOT	WORK	WITH	OTHER	PARTNER	TEAMS
• You	can	discuss	your	assignments	with	other	students,	and	credit	will	be	assigned	to	

students	who	help	others	by	answering	questions	on	Piazza	(participation),	but	we	expect	
that	what	you	hand	in	is	yours.

• Level	of	detail	allowed	to	discuss	with	other	students:	Concepts	(Material	taught	in	the	
class/	in	the	text	book)!	Pseudocode	is	NOT	allowed!

• Use	the	Office	Hours	of	the	TA	and	the	Prof.	if	you	need	help	with	your	homework/	
project!

• Rather	submit	an	incomplete	homework	with	maybe	0	points	than	risking	an	F!
• It	is	NOT	acceptable	to	copy	solutions	from	other	students.
• You	can	never	look	at	homework/	project	code	not	by	you/	your	team!
• You	cannot	give	your	code	to	anybody	else	–>	secure	your	computer	when	not	around	it	
• It	is	NOT	acceptable	to	copy	(or	start	your)	solutions	from	the	Web.	
• It	is	NOT	acceptable	to	use	PUBLIC	github archives	(giving	your	answers	away)
• We	have	tools	and	methods,	developed	over	many	years,	for	detecting	this.	You	WILL	be	

caught,	and	the	penalties	WILL	be	severe.	
• At	the	minimum	F	in	the	course,	and	a	letter	to	your	university	record	documenting	the	

incidence	of	cheating.
• Both	Giver	and	Receiver	are	equally	culpable	and	suffer	equal	penalties

38

Labs	&	HW1

• Labs:	Find	one	partner	for	your	lab-work	from	
you	lab	class!
– Labs	start	next	week
– Projects	are	done	individually	this	year!

• HW1	will	be	posted	this	week.	

39

Architecture	of	a	typical	Lecture

40

Attention

Time	(minutes)
10 30 75 100

Administrivia “And	in	
conclusion
…”

Full

Fun/News

Break

45

Agenda

• Thinking	about	Machine	Structures
• Great	Ideas	in	Computer	Architecture
• What	you	need	to	know	about	this	class
• Everything	is	a	Number

41

Key	Concepts
• Inside	computers,	everything	is	a	number
• But	numbers	usually	stored	with	a	fixed	size

– 8-bit	bytes,	16-bit	half	words,	32-bit	words,	64-bit	
double	words,	…

• Integer	and	floating-point	operations	can	lead	
to	results	too	big/small	to	store	within	their	
representations:	overflow/underflow

42

Number	Representation

• Value	of	i-th digit	is	d × Baseiwhere	i starts	at	0	
and	increases	from	right	to	left:

• 12310	=	110 x 10102 +	210 x 10101 +	310 x 10100

=	1x10010 +	2x1010 +	3x110
=	10010 +	2010 +	310
=	12310

• Binary	(Base	2),	Hexadecimal	(Base	16),	Decimal	
(Base	10)	different	ways	to	represent	an	integer
– We	use	1two,	5ten,	10hex to	be	clearer	

(vs.	12,				48,			510,		1016)

43

Number	Representation

• Hexadecimal	digits:	
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

• FFFhex =	15tenx	16ten2 +	15tenx	16ten1 +	15tenx	16ten0
=	3840ten +	240ten +	15ten
=	4095ten

• 1111	1111	1111two =	FFFhex =	4095ten
• May	put	blanks	every	group	of	binary,	octal,	or	
hexadecimal	digits	to	make	it	easier	to	parse,	like	
commas	in	decimal

44

Signed	and	Unsigned	Integers

• C,	C++,	and	Java	have	signed	integers,	e.g.,	7,	-255:
int x, y, z;

• C,	C++	also	have	unsigned	integers,	e.g.	for	
addresses

• 32-bit	word	can	represent	232 binary	numbers
• Unsigned	integers	in	32	bit	word	represent	
0	to	232-1	(4,294,967,295)	(4	Gig)

45

Unsigned	Integers
0000	0000	0000	0000	0000	0000	0000	0000two =	0ten
0000	0000	0000	0000	0000	0000	0000	0001two =	1ten
0000	0000	0000	0000	0000	0000	0000	0010two =	2ten

...	 ...
0111	1111	1111	1111	1111	1111	1111	1101two =	2,147,483,645ten
0111	1111	1111	1111	1111	1111	1111	1110two =	2,147,483,646ten
0111	1111	1111	1111	1111	1111	1111	1111two =	2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0000two =	2,147,483,648ten
1000	0000	0000	0000	0000	0000	0000	0001two =	2,147,483,649ten
1000	0000	0000	0000	0000	0000	0000	0010two =	2,147,483,650ten

...	 ...
1111	1111	1111	1111	1111	1111	1111	1101two =	4,294,967,293ten
1111	1111	1111	1111	1111	1111	1111	1110two =	4,294,967,294ten
1111	1111	1111	1111	1111	1111	1111	1111two =	4,294,967,295ten

46

Signed	Integers	and	
Two’s-Complement	Representation

• Signed	integers	in	C;	want	½	numbers	<0,	want	½	
numbers	>0,	and	want	one	0	

• Two’s	complement	treats	0	as	positive,	so	32-bit	
word	represents	232	integers	from
-231	(–2,147,483,648)	to	231-1	(2,147,483,647)
– Note:	one	negative	number	with	no	positive	version
– Book	lists	some	other	options,	all	of	which	are	worse
– Every	computer	uses	two’s	complement	today

• Most-significant	bit	(leftmost)	is	the	sign	bit,	
since	0	means	positive	(including	0),	1	means	
negative
– Bit	31	is	most	significant,	bit	0	is	least	significant

47

Two’s-Complement	Integers
0000	0000	0000	0000	0000	0000	0000	0000two =	0ten
0000	0000	0000	0000	0000	0000	0000	0001two =	1ten
0000	0000	0000	0000	0000	0000	0000	0010two =	2ten

...	 ...
0111	1111	1111	1111	1111	1111	1111	1101two =	2,147,483,645ten
0111	1111	1111	1111	1111	1111	1111	1110two =	2,147,483,646ten
0111	1111	1111	1111	1111	1111	1111	1111two =	2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0000two =	–2,147,483,648ten
1000	0000	0000	0000	0000	0000	0000	0001two =	–2,147,483,647ten
1000	0000	0000	0000	0000	0000	0000	0010two =	–2,147,483,646ten

...	 ...
1111	1111	1111	1111	1111	1111	1111	1101two =	–3ten
1111	1111	1111	1111	1111	1111	1111	1110two =	–2ten
1111	1111	1111	1111	1111	1111	1111	1111two =	–1ten

48

Sign	Bit

Ways	to	Make	Two’s	Complement
• For	N-bit	word,	complement	to	2tenN

– For	4	bit	number	3ten=0011two,	two’s	complement	

(i.e.	-3ten)	would	be	

16ten-3ten=13ten or	10000two – 0011two =	1101two

49

• Here	is	an	easier	way:
– Invert	all	bits	and	add	1

– Computers	actually	do	it	like	this,	too

0011two

1100two
+							1two

3ten

1101two

Bitwise	complement

-3ten

