
CS	110
Computer	Architecture	

Synchronous	Digital	Systems	

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Compiling,	Assembling,	Linking,	Loading
(CALL)	a	Program

2

Compiler
• Input:	High-Level	Language	Code	
(e.g.,	foo.c)

• Output:	Assembly	Language	Code
(e.g.,	foo.s for	MIPS)

• Note:	Output	may contain	pseudo-instructions
• Pseudo-instructions:	instructions	that	
assembler	understands	but	not	in	machine
For	example:
– move $s1,$s2Þ add $s1,$s2,$zero

3

Assembler
• Input:	Assembly	Language	Code	(MAL)
(e.g.,	foo.s for	MIPS)

• Output:	Object	Code,	information	tables	(TAL)
(e.g.,	foo.o for	MIPS)

• Reads	and	Uses	Directives
• Replace	Pseudo-instructions
• Produce	Machine	Language
• Creates	Object	File

4

Linker
• Input:	Object	code	files,	information	tables	(e.g.,	
foo.o,libc.o for	MIPS)

• Output:	Executable	code
(e.g.,	a.out for	MIPS)

• Combines	several	object	(.o)	files	into	a	single	
executable	(“linking”)	

• Step	1:	combine	text	segments	from.o files
• Step	2:	combine	data	segments	from	.o	files
• Step	3:	Resolve	references:
– Go	through	Relocation	Table;	handle	each	entry	=>
Resolve	absolute	addresses

5

Loader	Basics

• Input:	Executable	Code
(e.g.,	a.out for	MIPS)

• Output:	(program	is	run)
• Executable	files	are	stored	on	disk
• When	one	is	run,	loader’s	job	is	to	load	it	into	
memory	and	start	it	running

• In	reality,	loader	is	the	operating	system	(OS)	
– loading	is	one	of	the	OS	tasks

6

Static	vs	Dynamically	linked	libraries

• What	we’ve	described	is	the	traditional	way:	
statically-linked approach
– The	library	is	now	part	of	the	executable,	so	if	the	
library	updates,	we	don’t	get	the	fix	(have	to	
recompile	if	we	have	source)

– It	includes	the	entire library	even	if	not	all	of	it	will	be	
used

– Executable	is	self-contained
• An	alternative	is	dynamically	linked	libraries	
(DLL),	common	on	Windows	(.dll)	&	UNIX	(.so)	
(shared	object)	platforms

7

Dynamically	linked	libraries

• Space/time	issues
+	Storing	a	program	requires	less	disk	space
+	Sending	a	program	requires	less	time			
+	Executing	two	programs	requires	less	memory	(if	they	
share	a	library)
– At	runtime,	there’s	time	overhead	to	do	link

• Upgrades
+	Replacing	one	file	(libXYZ.so)	upgrades	every	
program	that	uses	library	“XYZ”
– Having	the	executable	isn’t	enough	anymore

Overall, dynamic linking adds quite a bit of complexity to the compiler, linker, and operating system.
However, it provides many benefits that often outweigh these

en.wikipedia.org/wiki/Dynamic_linking

8

Dynamically	linked	libraries

• The	prevailing	approach	to	dynamic	linking	
uses	machine	code	as	the	“lowest	common	
denominator”
– The	linker	does	not	use	information	about	how	
the	program	or	library	was	compiled	(i.e.,	what	
compiler	or	language)

– This	can	be	described	as	“linking	at	the	machine	
code	level”

– This	isn’t	the	only	way	to	do	it	...

9

In	Conclusion…
§ Compiler converts a single HLL file

into a single assembly language file.
§ Assembler removes pseudo-

instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.
ú Does 2 passes to resolve addresses,

handling internal forward references

§ Linker combines several .o files and
resolves absolute addresses.
ú Enables separate compilation, libraries

that need not be compiled, and
resolves remaining addresses

§ Loader loads executable into memory
and begins execution.

10

Levels	of	
Representation/Interpretation

lw $t0,	0($2)
lw $t1,	4($2)
sw $t1,	0($2)
sw $t0,	4($2)

High	Level	Language
Program	(e.g.,	C)

Assembly		Language	
Program	(e.g.,	MIPS)

Machine		Language	
Program	(MIPS)

Hardware	Architecture	Description
(e.g.,	block	diagrams)

Compiler

Assembler

Machine	
Interpretation

temp	=	v[k];
v[k]	=	v[k+1];
v[k+1]	=	temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic	Circuit	Description
(Circuit	Schematic	Diagrams)

Architecture	
Implementation

Anything	can	be	represented
as	a	number,	

i.e.,	data	or	instructions

11

• Parallel	Requests
Assigned	to	computer
e.g.,	Search	“Katz”

• Parallel	Threads
Assigned	to	core
e.g.,	Lookup,	Ads

• Parallel	Instructions
>1	instruction	@	one	time
e.g.,	5	pipelined	instructions

• Parallel	Data
>1	data	item	@	one	time
e.g.,	Add	of	4	pairs	of	words

• Hardware	descriptions
All	gates	@	one	time

• Programming	Languages
12

Smart
Phone

Warehouse	
Scale	

Computer

Software								Hardware

Harness
Parallelism	&
Achieve	High
Performance

Logic	Gates

Core Core…

Memory															(Cache)

Input/Output

Computer

Cache	Memory

Core

Instruction	Unit(s) Functional
Unit(s)

A3+B3A2+B2A1+B1A0+B0

Today

You	are	Here!

Hardware	Design
• Next	several	weeks:	how	a	modern	processor	is	built,	

starting	with	basic	elements	as	building	blocks
• Why	study	hardware	design?

– Understand	capabilities	and	limitations	of	HW	in	general	and	
processors	in	particular

– What	processors	can	do	fast	and	what	they	can’t	do	fast	
(avoid	slow	things	if	you	want	your	code	to	run	fast!)

– Background	for	more	in-depth	HW	courses	
– Hard	to	know	what	you’ll	need	for	next	30	years
– There	is	only	so	much	you	can	do	with	standard	processors:	you	

may	need	to	design	own	custom	HW	for	extra	performance
– Even	some	commercial	processors	today	have	customizable	hardware!
– E.g.	Google	Tensor	Processing	Unit	(TPU)

13

Synchronous	Digital	Systems

14

Synchronous:
• All	operations	coordinated	by	a	central	clock

§ “Heartbeat”	of	the	system!

Digital:
• Represent	all	values by	discrete	values
• Two	binary	digits:	1	and	0
• Electrical	signals	are	treated	as	1’s	and	0’s

• 1	and	0	are	complements	of	each	other
• High /low voltage	for	true /	false,	1 /	0

Hardware	of	a	processor,	such	as	the	MIPS,	is	an	example	of	
a	Synchronous	Digital	System

A Z

Switches:	Basic	Element	of	Physical	
Implementations

• Implementing	a	simple	circuit	(arrow	shows	action	if	
wire	changes	to	“1”	or	is	asserted):

Z º A

A Z

15

On-switch	(if	A	is	“1”	or	asserted)
turns-on	light	bulb	(Z)

Off-switch	(if	A	is	“0”	or	
unasserted)	turns-off	light	
bulb	(Z)

AND

OR

Z º A and B

Z º A or B

A B

A

B

Switches	(cont’d)

• Compose	switches	into	more	complex	ones	(Boolean	
functions):

16

Historical	Note

• Early	computer	designers	built	ad	hoc	circuits	
from	switches

• Began	to	notice	common	patterns	in	their	work:	
ANDs,	ORs,	…

• Master’s	thesis	(by	Claude	Shannon,	1940)	made	
link	between	work	and	19th Century	
Mathematician	George	Boole
– Called	it	“Boolean”	in	his	honor

• Could	apply	math	to	give	theory	to	
hardware	design,	minimization,	…

17

Transistors
• High	voltage	(Vdd)	represents	1,	or	true

– In	modern	microprocessors,	Vdd ~	1.0	Volt	
• Low	voltage	(0	Volt	or Ground)	represents	0,	or	false
• Pick	a	midpoint	voltage	to	decide	if	a	0	or	a	1

– Voltage	greater	than	midpoint	=	1
– Voltage	less	than	midpoint	=	0
– This	removes	noise	as	signals	propagate	– a	big	advantage	of	

digital	systems	over	analog	systems
• If one	switch	can	control	another	switch,	we	can	build	a	

computer!
• Our	switches:	CMOS	transistors

18

CMOS	Transistor	Networks
• Modern	digital	systems	designed	in	CMOS
– MOS:	Metal-Oxide	on	Semiconductor
– C	for	complementary: use	pairs	of	normally-on and	
normally-off switches

• CMOS	transistors	act	as	voltage-controlled	
switches
– Similar,	though	easier	to	work	with,	than	electro-
mechanical	relay	switches	from	earlier	era	

– Use	energy	primarily	when	switching	

19

n-channel transitor
off when voltage at Gate is low

on when:
voltage (Gate) > voltage (Threshold)

(High resistance when gate voltage Low,
Low resistance when gate voltage High)

p-channel transistor
on when voltage at Gate is low

off when:
voltage (Gate) > voltage (Threshold)

(Low resistance when gate voltage Low,
High resistance when gate voltage High)

CMOS	Transistors
• Three	terminals: source,	gate,	and	drain
– Switch	action:
if	voltage	on	gate	terminal	is	(some	amount)	higher/lower	
than	source	terminal	then	conducting	path	established	
between	drain	and	source	terminals	(switch	is	closed)

Gate

Source Drain

Gate

Source Drain

20

Note	circle	symbol	
to	indicate	“NOT”	
or	“complement”

Gate

DrainSource

field-effect	transistor	(FET)	=>	CMOS	circuits	use	a	combination	of	p-type	and	n-type	
metal–oxide–semiconductor	field-effect	transistors	=>

MOSFET	

21

Gordon	Moore
Intel	Cofounder

#	
of
	tr
an

sis
to
rs
	o
n	
an

in
te
gr
at
ed

	ci
rc
ui
t	(
IC
)

Year

#2:	Moore’s	Law

Predicts:	
2X	Transistors	/	chip	

every	2	years

Modern	microprocessor	chips	
include	several	billion	transistors

Intel	14nm	Technology

22
Plan	view	of	transistors	

Side	view	of	wiring	layers

1	nm	=	1	/	1,000,000,000	m;	wavelength	visible	light:	400	– 700	nm	

Sense	of	Scale

23

Source:	Mark	Bohr,	IDF14

1	nm	=	1	/	1,000,000,000	m;	wavelength	visible	light:	400	– 700	nm	

CMOS	Circuit	Rules
• Don’t	pass	weak	values	=>	Use	Complementary	Pairs
– N-type	transistors	pass	weak	1’s	(Vdd - Vth)
– N-type	transistors	pass	strong	0’s	(ground)
– Use	N-type	transistors	only	to	pass	0’s	(N	for	negative)
– Converse	for	P-type	transistors:	Pass	weak	0s,	strong	1s

• Pass	weak	0’s	(Vth),	strong	1’s	(Vdd)
• Use	P-type	transistors	only	to	pass	1’s	(P	for	positive)

– Use	pairs	of	N-type	and	P-type	to	get	strong	values
• Never	leave	a	wire	undriven
– Make	sure	there’s	always	a	path	to	Vdd or	GND

• Never	create	a	path	from	Vdd to	GND	(ground)
– This	would	short-circuit	the	power	supply!

24

1V

X

Y 0	Volt
(GND)

X Y

1 Volt
(Vdd)

0V

what		is	the	
relationship	

between	x	and	y?

CMOS	Networks

25

p-channel transistor
on when voltage at Gate is low

off when:
voltage(Gate) > voltage (Threshold)

n-channel transitor
off when voltage at Gate is low

on when:
voltage(Gate) > voltage (Threshold) Called	an	inverter	or	not	gate

1 Volt	(Vdd)

0	Volt	(GND)

what		is	the	
relationship between	x,	y and	z?

Two-Input	Networks

1V

X Y

0V

Z

26

X Y Z

0	Volt

1	Volt

0	Volt

1	Volt

0	Volt

0	Volt

1	Volt

1	Volt

1	Volt

1	Volt

1	Volt

0	Volt

Called	a	NAND	gate	
(NOT	AND)

X Y

0	Volt

1	Volt

0	Volt

1	Volt

0	Volt

0	Volt

1	Volt

1	Volt

Question

1V

X Y

0v

Z

27

Volts

Volts

Volts

Volts

Z

0 0 1

0 1 0

0 1 0 1

1 1 0 0

A B C

• Common	combinational	logic	
systems	have	standard	symbols	
called	logic	gates

– Buffer,	NOT

– AND,	NAND

– OR,	NOR

Combinational	Logic	Symbols

Z

A
B Z

Z

A

A
B

Inverting	versions	(NOT,	NAND,	NOR)	easiest	

to	implement with	CMOS	transistors (the	

switches	we	have	available	and	use	most)

28

1V

X Y

0V

1V

X
Y

0V

Remember…

•AND
•OR

29

Admin

• Midterm	I:	April	19th!
– Allowed	material:	1	hand-written	by	you	English
double-sided	A4	cheat	sheet.	
• Not	copied	– original	hand	written	– everything
• Violations:

– Found	before	midterm:	confiscate	cheat	sheet
– During/	after:	0	pts	in	midterm

– MIPS	green	card	provided	by	us!
– No	electronic	devices	– no Calculator!
– Content:	Number	representation,	C,	MIPS,	CALL
– Review	session	on	April	17th.

• Project	1.1	autograder
30

Boolean	Algebra

• Use	plus	“+”	for	OR
– “logical	sum”	 1+0	=	0+1	=	1	(True);	1+1=2	(True);	0+0	=	0	(False)

• Use	product	for	AND	(a�b or	implied	via	ab)
– “logical	product”									0*0	=	0*1	=	1*0	=	0	(False);	1*1	=	1	(True)

• “Hat”	to	mean	complement	(NOT)	
• Thus
ab +	a	+	c

=	 a�b +	a	+	c
=	 (a	AND	b)	OR	a	OR	(NOT	c)

31

Truth	Tables
for	Combinational	Logic

32

F Y

A
B

C
D

0

Exhaustive	list	of	the	output	value	
generated	for	each	combination	of	inputs

How	many	logic	functions	can	be	defined	
with	N	inputs?	

Truth	Table	Example	#1:	
y=	F(a,b):	1	iff a	≠	b

a b y
0 0 0
0 1 1
1 0 1
1 1 0

33

Y	=	A	B		+		A	B

Y	=	A		+		B

XOR

Truth	Table	Example	#2:	
2-bit	Adder

34

How
Many
Rows?

+ C1

A1
A0

B1
B0

C2

C0

Truth	Table	Example	#3:	
32-bit	Unsigned	Adder

35

How
Many
Rows?

Truth	Table	Example	#4:	
3-input	Majority	Circuit

36

Y	=	A	B	C		+		A	B	C			+		A	B	C		+		A	B	C

Y	=	B	C		+		A	(B	C			+		B	C)

Y	=	B	C		+		A	(B	+	C)

This	is	called	Sum	of	Products	form;
Just	another	way	to	represent	the	TT
as	a	logical	expression

More	simplified	forms	
(fewer	gates	and	wires)

Boolean	Algebra:	Circuit	&	Algebraic	
Simplification

37

Representations	of	Combinational	
Logic	(groups	of	logic	gates)

Truth	Table

Gate	DiagramBoolean	Expression

Sum	of	
Products,
Product	of	Sums	
Methods

Enumerate	
Inputs

Enumerate	
Inputs

Use	Equivalency	between	
boolean	operators	and	

gates

Laws	of	Boolean	Algebra

39

X	X	=	0
X	0	=	0
X	1	=	X
X	X	=	X
X	Y	=	Y	X

(X	Y)	Z	=	Z	(Y	Z)
X	(Y	+	Z)	=	X	Y	+	X	Z

X	Y	+	X	=	X
X	Y	+	X	=	X	+	Y
X	Y	=	X	+	Y

X	+	X	=	1
X	+	1	=	1
X	+	0	=	X
X	+	X	=	X

X	+	Y	=	Y	+	X
(X	+	Y)	+	Z	=	Z	+	(Y	+	Z)
X	+	Y	Z	=	(X	+	Y)	(X	+	Z)

(X	+	Y)	X	=	X
(X	+	Y)	X	=	X	Y
X	+	Y	=	X	Y

Complementarity
Laws	of	0’s	and	1’s

Identities
Idempotent	Laws
Commutativity
Associativity
Distribution

Uniting	Theorem
Uniting	Theorem	v.	2
DeMorgan’s Law

Boolean	Algebraic	Simplification	
Example

40

Boolean	Algebraic	Simplification	
Example

41

a	b c y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Question

• Simplify	Z	=	A+BC	+	A(BC)

• A:	 Z	=	0
• B:	 Z	=	A(1+	BC)
• C:			Z	=	(A	+	BC)
• D:		Z	=	BC
• E:			Z	=	1

42

News	(2017):
Open	Compute	Project	Summit:	

Google	&	ST	Microelectronics:	48V	to	Chip
• Point-of-Load-(PoL)	Converter
• 48V	to	0.5V	..	1V	..	up	to	12V	>		300	W	@	1V!
• Efficiency:	230V	AC	89.3%;						48V	DC	92.1%

43

44

45

Signals	and	Waveforms
an-1 an-1 a0

Noisy!
Delay!

Signals	and	Waveforms:	Grouping

Signals	and	Waveforms:	Circuit	Delay

2

3

3 4 5

10 0 1

5 13 4 6

Sample	Debugging	Waveform

Type	of	Circuits
• Synchronous	Digital	Systems	consist	of	two	
basic	types	of	circuits:
• Combinational	Logic	(CL)	circuits

–Output	is	a	function	of	the	inputs	only,	not	the	history	
of	its	execution
– E.g.,	circuits	to	add	A,	B	(ALUs)

• Sequential	Logic	(SL)
• Circuits	that	“remember”	or	store	information
• aka	“State	Elements”
• E.g.,	memories	and	registers	(Registers)

50

