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Levels of
Representation/Interpretation

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw  St0, 0(S2)
lw  St1, 4(52)
sw  $t1, 0(S2)
sw StO0, 4(S2)
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Register File

ALU

Logic Circuit Description
(Circuit Schematic Diagrams)

I

Anything can be represented
as a humber,
i.e., data or instructions
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Type of Circuits

* Synchronous Digital Systems consist of two
basic types of circuits:

 Combinational Logic (CL) circuits

— QOutput is a function of the inputs only, not the history
of its execution

—E.g., circuits to add A, B (ALUs)
e Sequential Logic (SL)
e Circuits that “remember” or store information

e aka “State Elements”
* E.g., memories and registers (Registers)



Uses for State Elements

* Place to store values for later re-use:
— Register files (like $1-S31 in MIPS)
— Memory (caches and main memory)

* Help control flow of information between
combinational logic blocks
— State elements hold up the movement of

information at input to combinational logic blocks
to allow for orderly passage



Accumulator Example

Why do we need to control the flow of information?

X, —A—  SUM A—> S

Want: S=0;
for (1=0;1<n;1++)
S = 5 + X,
Assume:
* Each X value is applied in succession, one per cycle

* After n cycles the sum is present on S



First Try: Does this work?

— I~

>+ S

o
u <Feedback |
No!

Reason #1: How to control the next iteration of
the ‘for’ loop?
Reason #2: How do we say: ‘S=0"7?




Second Try: How About This?
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Model for Synchronous Systems
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¥ output
* Collection of Combinational Logic blocks separated by registers
* Feedback is optional
 Clock signal(s) connects only to clock input of registers
* Clock (CLK): steady square wave that synchronizes the system
* Register: several bits of state that samples on rising edge of CLK
(positive edge-triggered) or falling edge (negative edge—triggereg)



Register Internals

th dn- dn-y Ao
—3 1 . -
Reg\s\'ex CLQ—_ = ‘F-\!? FF 4 ~ s = IFF
. Q J 1 -
{“ ' ISR %o

* ninstances of a “Flip-Flop”

* Flip-flop name because the output flips and flops
between O and 1

* Dis “data input”, Qis “data output”
* Also called “D-type Flip-Flop”



Flip-Flop Operation

* Edge-triggered d-type flip-flop J—
— This one is “positive edge-triggered”
* “On the rising edge of the clock, the input d is

sampled and transferred to the output. At all
other times, the input d is ignored.”

 Example waveforms: -
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Flip-Flop Timing

Edge-triggered d-type flip-flop J—
— This one is “positive edge-triggered”
“On the rising edge of the clock, the input d is

sampled and transferred to the output. At all
other times, the input d is ignored.”

Example waveforms (more detail):
* :

N Tnput data muer be <table CLN

" ' \v\'\’\\s Per\
! e "sekup" Hime
i :-\k "hold Fime. A —FF —%

|

{

l

| -
I ‘

S

l

i

!

N\

1

N

«— C\K—‘\'o'ﬁ(" cwcuj




Camera Analogy Timing Terms

Want to take a portrait — timing right before
and after taking picture

Set up time — don’t move since about to take
picture (open camera shutter)

Hold time — need to hold still after shutter
opens until camera shutter closes

Time click to data — time from open shutter
until can see image on output (viewscreen)
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Hardware Timing Terms

e Setup Time: when the input must be stable
before the edge of the CLK

* Hold Time: when the input must be stable
after the edge of the CLK

* “CLK-to-Q” Delay: how long it takes the output
to change, measured from the edge of the CLK
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Accumulator Timing 1/2

— K e Reset input to register is
used to force it to all zeros
(takes priority over D

1 / input).

—P
EL * S, holds the result of the

’ ith-1 iteration.
el —| Reg. %——cug
| * Analyze circuit timing
|Si-1

starting at the output of the
register.
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Accumulator Timing 2/2

et —

reset signal shown.

Also, in practice X might not
arrive to the adder at the
same time as S, 4

S. temporarily is wrong, but
register always captures
correct value.

In good circuits, instability
never happens around
rising edge of clk.




Maximum Clock Frequency

 What is the maximum frequency of this circuit?

Inputs |

Combinational
Logic

OutEuts Hint:
Frequency = 1/Period

>

>

I Next State

> Register

Current Statel

Max Delay = CLK-to-Q Delay + CL Delay + Setup Time
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Critical Paths
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Note: delay of 1 clock cycle from input to output.
Clock period limited by propagation delay of adder/shifter.
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Pipelining to improve performance
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* Insertion of register allows highér cIoCk frequencg/.
« More outputs per second (higher bandwidth)
« But each individual result takes longer (greater latency) =




Recap of Timing Terms

Clock (CLK) - steady square wave that synchronizes system

Setup Time - when the input must be stable before the
rising edge of the CLK

Hold Time - when the input must be stable after the rising
edge of the CLK

“CLK-to-Q” Delay - how long it takes the output to change,
measured from the rising edge of the CLK

Flip-flop - one bit of state that samples every rising edge of
the CLK (positive edge-triggered)

Register - several bits of state that samples on rising edge
of CLK or on LOAD (positive edge-triggered)



Question

Clock->Q 1ns
Setup 1ns
Hold 1ns

AND delay 1ns

What is maximum clock frequency?
* A:5GHz

 B:500 MHz

 C:200 MHz

 D:250 MHz

 E:1/6 GHz
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Finite State Machines (FSM) Intro

« A convenient way to
conceptualize computation
over time

« We start at a state and given
an input, we follow some
edge to another (or the
same) state \

» The function can be 2 .
represented with a “state @
transition diagram”. ~

« With combinational logic and
registers, any FSM can be
|mplemente iIn hardware.
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FSM Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1’s in the input.

<~ Y ey B . e pr
TINPUT .¢|1@\|¢III®||\ICD|llI\l

%

ouThuT Eml L InEEt

L/ Input/output

Draw the FSM... . \
@@ :

Assume state transitions are controlled by the clock:
on each clock cycle the machine checks the inputs and
moves to a new state and produces a new output... 2




Hardware Implementation of FSM

... Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state.

JL ol e

preceit (e
Swe C )
I -
NS ‘k —» OUTYUI
Combinational logic circuit is used to
implement a function that maps from 2 4—adX
present state and input to next state s
and output. ”




FSM Combinational Logic

Specify CL using a truth table

ol e

CL
ir L——-b OUTPUT

vexY
ey (NS)

Truth table...

PS | Input | NS | Output
00| O 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10| O 00 0
10 1 00 1
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Representations of Combinational
Logic (groups of logic gates)

Enumerate
Enumerate Sum of Inputs
Inputs Products,
Product of Sums
Methods

Use Equivalency between
Boolean Expression boolean operators and Gate Diagram
gates




Building Standard Functional Units

» Data multiplexers
 Arithmetic and Logic Unit
» Adder/ Subtractor
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Data Multiplexer (“Mux”)
(here 2-to-1, n-bit-wide)




™

v Cnl cfal Wl |

a
(ab + ab) + s(ab + ab)

(a
(a

N instances of 1-bit-wide mux
How many rows in TT?

L _
G
b i'
S
b + Sab + sab + sab

(b+b)) + s((a@+ a)b)
(1) +s((1)b)

+ sb




How do we build a 1-bit-wide mux?

sa + sb



4-to-1 multiplexer?

a b A

How many rows in TT?

9’- 5,56

e = S1S0a + S1S0b + s1Spc + s1spd



Another way to build 4-1 mux?

Ans: Hierarchically!



Arithmetic and Logic Unit

* Most processors contain a special logic block
called the “Arithmetic and Logic Unit” (ALU)

* We’ Il show you an easy one that does ADD,
SUB, bitwise AND, bitwise OR

AooB
= when S=00, R=A+B
\ Y ¢ When S=01, R=A-B
| when S=10, R=A AND B
I when S=11, R=A OR B

R
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Our simple ALU
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Question

Convert the truth table to a boolean expression
(no need to simplify):

A: F =xy + x(™y)

B: F=xy + (“x)y + (™x)(™y)
C: F=(~x)y + x(~y)
D: F=xy+ (“x)y

E: F = (x+y)(~x+~y)

x y| F(x,y)
00 0
0 1 1
10 0
1 1 1
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How to design Adder/Subtractor?

 Truth-table, then * Look at breaking the
determine canonical problem down into
form, then minimize smaller pieces that we
and implement as can cascade or

we’ ve seen before hierarchically layer
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Adder/Subtractor — One-bit adder

LSB...
dp b() So €4
d3 do 4dj | 4 0 010 O
+ bsg by by |bg O 1|1 O
S So  S1 | So 1 0|1 O
1 10 1
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Adder/Subtractor — One-bit adder

(1/2)...

a; b; C |8 Ciy1
O 0 0|0 O
O 0 1|1 O
d3 d2 | 41 | 4o 0 1 0|1 O
+ bg by | by | by O 1 17160 1
Ss S | S1 | Sp O 0|1 O
O 1|0 ‘

1 010

1 111

Ci+1
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Adder/Subtractor — One-bit adder (2/2)

O
b

S; = XOR(CLZ', bi, Ci)
Cit+1 — MAJ(CLZ', bz', Cz’) — G/ibi + a;C; + bici



N 1-bit adders => 1 N-bit adder

What about overflow?
Overflow =c_?
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Extremely Clever Subtractor:
S =a + (-b)
bway Gaey b, 4, boe Qo

SUR

sub XOR(x,sub)

overtlow XOR serves as 0

conditional inverter!

- = O ol x ©
- O = O

1
1
040



In Conclusion

 Finite State Machines have clocked state
elements plus combinational logic to describe
transition between states

— Clocks synchronize D-FF change (Setup and Hold
times important!)

e Standard combinational functional unit blocks
built hierarchically from subcomponents



