CS 110
Computer Architecture

Finite State Machines,
Functional Units

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Levels of
Representation/Interpretation

High Level Language
Program (e.g., C)

Compiler

Assembly Language
Program (e.g., MIPS)

Assembler

Machine Language
Program (MIPS)

Machine
Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw St0, 0(S2)
lw St1, 4(52)
sw $t1, 0(S2)
sw StO0, 4(S2)

0000 1001 1100
1010 1111 0101
1100 0110 1010
0101 1000 0000

1]

Register File

ALU

Logic Circuit Description
(Circuit Schematic Diagrams)

I

Anything can be represented
as a humber,
i.e., data or instructions

0110
1000
1111
1001

B

>

1010
0000
0101
1100

1111 0101
1001 1100
1000 0000
0110 1010

1000
0110
1001
1111

Type of Circuits

* Synchronous Digital Systems consist of two
basic types of circuits:

 Combinational Logic (CL) circuits

— QOutput is a function of the inputs only, not the history
of its execution

—E.g., circuits to add A, B (ALUs)
e Sequential Logic (SL)
e Circuits that “remember” or store information

e aka “State Elements”
* E.g., memories and registers (Registers)

Uses for State Elements

* Place to store values for later re-use:
— Register files (like $1-S31 in MIPS)
— Memory (caches and main memory)

* Help control flow of information between
combinational logic blocks
— State elements hold up the movement of

information at input to combinational logic blocks
to allow for orderly passage

Accumulator Example

Why do we need to control the flow of information?

X, —A— SUM A—> S

Want: S=0;
for (1=0;1<n;1++)
S = 5 + X,
Assume:
* Each X value is applied in succession, one per cycle

* After n cycles the sum is present on S

First Try: Does this work?

— I~

>+ S

o
u <Feedback |
No!

Reason #1: How to control the next iteration of
the ‘for’ loop?
Reason #2: How do we say: ‘S=0"7?

Second Try: How About This?

7({, 7 Register is used to
-+ /- — S hold up the transfer
* ‘Y of data to adder
et vaagshawi——-LC%D/cLK
| Square wave clock sets when things change
Low (0) W¥D/ K |

Rounded Rectangle per clock means could be 1 or O

Yo | vay Iwh‘fxz.‘ﬁﬁxﬁxz‘fl__

Rough High (1)
timing ...Low(©) = .
High (1)

Low (0) A)Xz \f X3 Y

Time >

" e ————————— -

3
.;:-_2____1_
X

Model for Synchronous Systems

clock _[1[I | jnput
I I
IRIE @l Mool CL Mreg—e-ep OUIOLL

r
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
I
|
|
|
|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
|
I
|
|
L

¥ output
* Collection of Combinational Logic blocks separated by registers
* Feedback is optional
 Clock signal(s) connects only to clock input of registers
* Clock (CLK): steady square wave that synchronizes the system
* Register: several bits of state that samples on rising edge of CLK
(positive edge-triggered) or falling edge (negative edge—triggereg)

Register Internals

th dn- dn-y Ao
—3 1 . -
Reg\s\'ex CLQ—_ = ‘F-\!? FF 4 ~ s = IFF
. Q J 1 -
{“ ' ISR %o

* ninstances of a “Flip-Flop”

* Flip-flop name because the output flips and flops
between O and 1

* Dis “data input”, Qis “data output”
* Also called “D-type Flip-Flop”

Flip-Flop Operation

* Edge-triggered d-type flip-flop J—
— This one is “positive edge-triggered”
* “On the rising edge of the clock, the input d is

sampled and transferred to the output. At all
other times, the input d is ignored.”

 Example waveforms: -

1| !l !

o LU UL e

e —— —— -

———

Flip-Flop Timing

Edge-triggered d-type flip-flop J—
— This one is “positive edge-triggered”
“On the rising edge of the clock, the input d is

sampled and transferred to the output. At all
other times, the input d is ignored.”

Example waveforms (more detail):
* :

N Tnput data muer be <table CLN

" ' \v\'\’\\s Per\
! e "sekup" Hime
i :-\k "hold Fime. A —FF —%

|

{

l

| -
I ‘

S

l

i

!

N\

1

N

«— C\K—‘\'o'ﬁ(" cwcuj

Camera Analogy Timing Terms

Want to take a portrait — timing right before
and after taking picture

Set up time — don’t move since about to take
picture (open camera shutter)

Hold time — need to hold still after shutter
opens until camera shutter closes

Time click to data — time from open shutter
until can see image on output (viewscreen)

12

Hardware Timing Terms

e Setup Time: when the input must be stable
before the edge of the CLK

* Hold Time: when the input must be stable
after the edge of the CLK

* “CLK-to-Q” Delay: how long it takes the output
to change, measured from the edge of the CLK

13

Accumulator Timing 1/2

— K e Reset input to register is
used to force it to all zeros
(takes priority over D

1 / input).

—P
EL * S, holds the result of the

’ ith-1 iteration.
el —| Reg. %——cug
| * Analyze circuit timing
|Si-1

starting at the output of the
register.

_H

cLK m W {‘\ i~

e D@ LL %o-fxo*xI L sie _
B o T A L .I XlIXZJ X?IX‘I Xs i l‘:— Tcu«—rc»@

o D 6% ¢5 S G I G

-— o

Accumulator Timing 2/2

et —

reset signal shown.

Also, in practice X might not
arrive to the adder at the
same time as S, 4

S. temporarily is wrong, but
register always captures
correct value.

In good circuits, instability
never happens around
rising edge of clk.

Maximum Clock Frequency

 What is the maximum frequency of this circuit?

Inputs |

Combinational
Logic

OutEuts Hint:
Frequency = 1/Period

>

>

I Next State

> Register

Current Statel

Max Delay = CLK-to-Q Delay + CL Delay + Setup Time

16

Critical Paths

g
t Y‘&%N\s"\’&f 2—
PR i\/\?y\‘g Timing...

+ o LML L

| | |
| { ‘m?d*s l (”TI(L*” I(Ln)
\ s\m{“wﬂ ; g |
L jt e RL K\, i * (L) I (L-H)
"%\;k\‘ < = «— add/hift prop, &lej

Ki-, Ri-1 BESREC

Note: delay of 1 clock cycle from input to output.
Clock period limited by propagation delay of adder/shifter.

17

Pipelining to improve performance

A
9

reql | register

eqz | Gegister 4

[over

£ s

@3 gt 4

y = S

Timing...

;’ T \w‘p\)‘\’<
v)

Sy

S SL_,|

Ri-1

Pi-—’L

cx ||

RERERERT

\\WPO’\'Q J (1)

G+ 1) X(Lm‘ (143D [|

l
|

S T

(L) l@mﬁu 2) ‘LE L+3I

-

Sy

Ri- 4

Ai& \)

K

| l mI@m f@ﬂf

* Insertion of register allows highér cIoCk frequencg/.
« More outputs per second (higher bandwidth)
« But each individual result takes longer (greater latency) =

Recap of Timing Terms

Clock (CLK) - steady square wave that synchronizes system

Setup Time - when the input must be stable before the
rising edge of the CLK

Hold Time - when the input must be stable after the rising
edge of the CLK

“CLK-to-Q” Delay - how long it takes the output to change,
measured from the rising edge of the CLK

Flip-flop - one bit of state that samples every rising edge of
the CLK (positive edge-triggered)

Register - several bits of state that samples on rising edge
of CLK or on LOAD (positive edge-triggered)

Question

Clock->Q 1ns
Setup 1ns
Hold 1ns

AND delay 1ns

What is maximum clock frequency?
* A:5GHz

 B:500 MHz

 C:200 MHz

 D:250 MHz

 E:1/6 GHz

20

Finite State Machines (FSM) Intro

« A convenient way to
conceptualize computation
over time

« We start at a state and given
an input, we follow some
edge to another (or the
same) state \

» The function can be 2 .
represented with a “state @
transition diagram”. ~

« With combinational logic and
registers, any FSM can be
|mplemente iIn hardware.

21

FSM Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1’s in the input.

<~ Y ey B . e pr
TINPUT .¢|1@\|¢III®||\ICD|llI\l

%

ouThuT Eml L InEEt

L/ Input/output

Draw the FSM... . \
@@ :

Assume state transitions are controlled by the clock:
on each clock cycle the machine checks the inputs and
moves to a new state and produces a new output... 2

Hardware Implementation of FSM

... Therefore a register is needed to hold the a representation of which
state the machine is in. Use a unique bit pattern for each state.

JL ol e

preceit (e
Swe C)
I -
NS ‘k —» OUTYUI
Combinational logic circuit is used to
implement a function that maps from 2 4—adX
present state and input to next state s
and output. ”

FSM Combinational Logic

Specify CL using a truth table

ol e

CL
ir L——-b OUTPUT

vexY
ey (NS)

Truth table...

PS | Input | NS | Output
00| O 00 0
00 1 01 0
01 0 00 0
01 1 10 0
10| O 00 0
10 1 00 1

24

Representations of Combinational
Logic (groups of logic gates)

Enumerate
Enumerate Sum of Inputs
Inputs Products,
Product of Sums
Methods

Use Equivalency between
Boolean Expression boolean operators and Gate Diagram
gates

Building Standard Functional Units

» Data multiplexers
 Arithmetic and Logic Unit
» Adder/ Subtractor

26

Data Multiplexer (“Mux”)
(here 2-to-1, n-bit-wide)

™

v Cnl cfal Wl |

a
(ab + ab) + s(ab + ab)

(a
(a

N instances of 1-bit-wide mux
How many rows in TT?

L _
G
b i'
S
b + Sab + sab + sab

(b+b)) + s((a@+ a)b)
(1) +s((1)b)

+ sb

How do we build a 1-bit-wide mux?

sa + sb

4-to-1 multiplexer?

a b A

How many rows in TT?

9’- 5,56

e = S1S0a + S1S0b + s1Spc + s1spd

Another way to build 4-1 mux?

Ans: Hierarchically!

Arithmetic and Logic Unit

* Most processors contain a special logic block
called the “Arithmetic and Logic Unit” (ALU)

* We’ Il show you an easy one that does ADD,
SUB, bitwise AND, bitwise OR

AooB
= when S=00, R=A+B
\ Y ¢ When S=01, R=A-B
| when S=10, R=A AND B
I when S=11, R=A OR B

R

32

Our simple ALU

Se — QM/S\)\::'\'F&.C*J AN D J L oR
1 T 32 | | 32
o\lex-Q\oug L,
432 \0 \ /___ % .
I
o |\ [S,
3L

K

Question

Convert the truth table to a boolean expression
(no need to simplify):

A: F =xy + x(™y)

B: F=xy + (“x)y + (™x)(™y)
C: F=(~x)y + x(~y)
D: F=xy+ (“x)y

E: F = (x+y)(~x+~y)

x y| F(x,y)
00 0
0 1 1
10 0
1 1 1

34

How to design Adder/Subtractor?

 Truth-table, then * Look at breaking the
determine canonical problem down into
form, then minimize smaller pieces that we
and implement as can cascade or

we’ ve seen before hierarchically layer

35

Adder/Subtractor — One-bit adder

LSB...
dp b() So €4
d3 do 4dj | 4 0 010 O
+ bsg by by |bg O 1|1 O
S So S1 | So 1 0|1 O
1 10 1

36

Adder/Subtractor — One-bit adder

(1/2)...

a; b; C |8 Ciy1
O 0 0|0 O
O 0 1|1 O
d3 d2 | 41 | 4o 0 1 0|1 O
+ bg by | by | by O 1 17160 1
Ss S | S1 | Sp O 0|1 O
O 1|0 ‘

1 010

1 111

Ci+1

37

Adder/Subtractor — One-bit adder (2/2)

O
b

S; = XOR(CLZ', bi, Ci)
Cit+1 — MAJ(CLZ', bz', Cz’) — G/ibi + a;C; + bici

N 1-bit adders => 1 N-bit adder

What about overflow?
Overflow =c_?

39

Extremely Clever Subtractor:
S =a + (-b)
bway Gaey b, 4, boe Qo

SUR

sub XOR(x,sub)

overtlow XOR serves as 0

conditional inverter!

- = O ol x ©
- O = O

1
1
040

In Conclusion

 Finite State Machines have clocked state
elements plus combinational logic to describe
transition between states

— Clocks synchronize D-FF change (Setup and Hold
times important!)

e Standard combinational functional unit blocks
built hierarchically from subcomponents

