CS 110
Computer Architecture
Review for Midterm |

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Midterm |

Date: Thursday, Apr. 19

Time: 10:15 - 12:15 (normal lecture slot)
— Be punctual — we start 10:15 sharp!

Venue: Teaching Center 301 + 302

One empty seat between students

Closed book:

— You can bring one A4 page with notes (both sides;
English preferred; Chinese is OK): Write your Chinese
and Pinyin name on the top! Handwritten by you!

— You will be provided with the MIPS “green sheet”
— No other material allowed!

Midterm |

Switch cell phones off! (not silent mode — off!)
— Put them in your bags.

Bags under the table. Nothing except paper, pen,
1 drink, 1 snack on the table!

No other electronic devices are allowed!

— No ear plugs, music, smartwatch...

Anybody touching any electronic device will FAIL
the course!

Anybody found cheating (copy your neighbors
answers, additional material, ...) will FAIL the

course!

FUNCTIONS OF SEVERAL VARABLES | 2= £(x 1y), w= £0y,2)] Pomans: Allowrd Gy , (x4, 2) RMIGES: 25w'
LEVEL CURVES g;:g FUNCTION OF N VARIABLES £-d DEFINITION OF ConTINUITY

= = = LeT F 6E A lon oF Z VARIABLES DEFVED
?ow'r:u‘\(z WS(«;N«;. Z2 E0cxzee - xn RO (R 7\ 1c 4 oy 2N A e W CBNGE (M%) , BRLEPT POTSIBY
- Bwy G
R" — R 3w R Su -.) @CaMN L THEN T £)

W= F(*4,2)=k = ConsT| 1. ,.s.;..,‘m.,,,,c On Cnag)

N real vaciabes x 5 1912 (a,b)
SURFACE LAERS (3-D) ‘ A3 a Panctton & asingts oh-vartadle },(f, 7 ,,,_\ IF For. EvERY ¥ € Y0 , THEREIS & CORRESPND Mo
: Ko 0 Forstion of aingle vector vor, F=mongy] # 70 Sb. IF(x,4)-L|CT whsvavar 0L

PARTIAL 'DERlYATlVES De-ivnuv:s w/ Rgspect tome vavldole, [TF THE LIMIT AS A FUNCTION APP ROAL AeaNT
Z2=FGay) \oug nolding Hne oty victaloles codmut] (o, 6 ALONG TWo DIEFFERENT PATAS 1S NOT
&(w.«s\ ;x e z SAME Hotps FOR FUNCTOS | TME SAME, THE LIMIT Dos NOT Bxs T ©

OF Mong THAN Two 6 1 » uUSs AT (a ! Tae uMIT
£ 9 (g = fy= hf- ?':EE)_ VARIAGIES Gag) s conTne by \F

OF (14 &g (’“‘l’—‘“‘b\ BxsTs.
SECond Phk‘\‘lkL DEF-\VATI\EG

CLAR AUTS MPOS ITE FUNCTIONS oF ColTINWOUG FUNCTIos|

3 G-

o B BE 55 - 2 (B
s S 5 ()

IF Fxy AND Fyx
ARE BOTA GNThaoUS

ME CONTINVOUS |, AS ARE SuMS AND PRODULT
EGUATIONS OF TA L Tosu

2=£Gay) @ (%0,Yo; 2) EVKIWKTED ATA POINT

5,..5 (a®)= £yyc(a,b)

230z £ (Xe40) Cr—30) + by Bos,40) (4 -Y0)

ToTAL DiFFERENTAL | (”"i* FONAK SROHE

Fyx= _?a(ﬁ%) WE 285 l(g? PARTIAL DIFE. EQS

T2 bkanj J[TAPLACE " T
2 (aj i(gi %’5; re0 e €8 « Suticldn +-yfeagidy = A"" %d‘i
il %f) oy2” & 3) 2= L saw e Avc, g Ay S ‘“ﬂ"‘

o 2 SMALL By, By Ax=0dhx
THE CHAMIN RULE [SWOLE VABABLE 4=5Gd), x=gU8) | le "F‘%\‘i TF £x Wb&-; ':"EC&)T)NADE :;5%4&

4= (g00)-9'(¥) e (s L:::ﬁ:: h.l,»\.& .c?mau\ 2 Claag In halguk
CAGEi 2 {r(xup L X2GE), yzh) e a,&rgm,um) oo Bios (d2)
Z’_g bz = -F(An»q\whd) f(a,0) | THEOREM
z< a‘az g% or w/g=F -§sz+

Az = 6.00,0) D% +Hyla,b) By + € D% & €2 AY Glnen,
€100 €2 Wp Functlons of B aned Dy sk

cave 2] 2= £ 1xy) x=aGw), Y=cs (& ie E—Ka(ﬁ.n,h(s,e\) Aegroscla O as (B, A\ — (0,0) ;.
53 Bbx 22 2z _ Mnosm:n.fo o
%g b‘ =% Si‘* L,,‘! Loy peeh] 5 £ 15 DIFERENTINBLE @ (A) foc 2= Flxy)

Yo CAN FiND

B H w) x,..l—_g(e. - tm) |2
I i ERaE e i
5 BN o 8 RTE 2
Obs i Oy L*D“ i 4&5‘%1: Seoa Ui ® % ® % 2 m;‘ww““m:
[ey DIEFEReNATION] You can s soive for §or 2L v , 2 m@:wm i) Sk
gﬂ;;g’g;% oo Ex 22 -3 -ma[THE mmsm' vecvoql 2=£09) Fohrr
3 > 3 T oyt w2t H
% 24 G VeGay)= (x.,\} =[x Fy)= (%{; a&)
e 3t o0 T] ARy ‘“"‘“‘WW“‘W"LM’:\V&SI DIF, 7= ()

TANGENT PLANE T0 A LEVEL- SURFACE [PF L ToTarNetbe| D £ Geu= £, 0 £
Fu (=% + Ty (3-9 0 g oo W2 Ee0ng) a v Ry Geud b SAME For
% (27X + Ty (4= 4V + 5 (22070 o cpgagn| VE T (I=0 D@ Flxe) = WEb) S Uiy

Nﬂﬂm—twstaabeva_s.m ¥ - 4-Yo_ 3-20 ML O
[= 25 (oodd [DT e ocours wben UF tsinte s ama Dir. a5

LD DERMITIoN

“’“g! = '*‘-lasm.@ Fixu2)= Hx-gl =0 LEVEL SURTALE w/ k=0 | e = V6T = [e\ [Tl cose = W] @1=1=0s0)
THEN -4 V= Sy 1) wd TN pyedire] i—z.:&(mv&.s(g-g.s o T GoADIE T Vecton POBTS 1 THE DIRECTON
OF STEEVEST ASCENT 0R DBESCENT (awASUE
TENT VECToR 15 0R THoGoNAL To THE
LEVEL CURVES OF A SURFACE

MAXIMUM AND MINIMUM VALUE S Z‘Hxﬂg\
£x(ao)=0 &g(n.u)—? VElap)= (0,00

NoT SUF FLEENT &umuﬂée A Mac<. 0z Mt N-
Boax T ig_o Solva For Oriveal We, (Aways dwad< (0,0 Y Hg ovigim
THEN A—’?Pw THE IND DE‘L\vAfnvs "EST Fnd fex, “;1 Frey:

22D70 , Hex70 LoCAL MIN,

T FRS ISR ComPaNENTS As £

INDEPENPENT VARABLES, N° (6 f
F | B S 5 TOFINS THE NoBMAL (AN LNTER-

Fyx by 7Y LbY0 | Fux<o Local MAx | TOASURFACE, LET THAT SURFALE BE THE
+D <O SADDLERT. Do MEIRE| LEVEL SET OF SoME HIGHER DIMENSIONAL

| EIND ING ABSOLUTE MAX. AND Ml ms FanCTioy. THEN THE GRADIENT OF THE
[Find aues of ¥ ot e crisieal polnks. of Hioreg D FupNcTon S | To YouR SUae (e

s Y

2. Find Hae Oxtyams valies of £ on e B-wun,-:—b — =
i g TR 4o =¥y rz%] Lot Wz xtrgiez?-1
3. The lages+ value fom 4,,2. 15 Hae ABS. MAX, Mo Suagliast Eratiased g i LavEl SET W0

WX TMTZNG AND MINIM12ING ' Sck o 0 funeHon of Fwo s,) 12
Varlables of ¥ae Sorm 7= $iey) ard Frth Dodna Usual Roking J ;_;7!;;“;212) 'i;-::_m VECTORTOTE

72y

e 2o fgp

veloesry
dipiacinr iy
e

et ersy
- kinenc "

f1es M

7o

)

S e

—_—
:’ﬁ;.ﬂ L/gmu ! # ¥ the et

Mﬁ%
Acceleration N /f!m}’ ona/
Lt A AN

ind wiery oA AL,
MMM’L

i mmiq”” rmr it
%ﬁf‘” o niganw

y staL

orc L

N ity i)

s Couid proctuce contirculs spoctra

r Parrow brght 110es on a blac
ckqro

o~ TG S

LN e |
IENVE | f“»i‘?’lu e w

WW oF run
oo ol a, o aliel
r i U (P

on of

—
; ~flom point

Pl ACTION /S THEE ENDING OF LIG HT
PIFFR (% 7

AROUIND CBSTACLES ANP TH
APE RT(JR ES

Ao T oo

ErMisaion
pectral <lu., Slas //mm.r‘ Jcheme
W baared OF Tiparcit

o a A

cecl er Srars have mote COmMplx e
mau

et = ey

(uce

Mm1p:adxv(;7 fmtdnuqn

Liffere 1 magnitude = 2.512 x
differerce of \agn bnghfer-
Luminosity

e tote

ure erergy
ated O\.\‘f'a.r/u‘lm i
7m hofﬁzr me star megmww 113

fui
A hc bt u the star (vurface, radsud)
réﬁﬂv furmineus B
epheidy ard STarE That v
: nvr\mis over peNoad of 7Cd
Ampwwd& range: 0.5~ zma

i
nawvey
Joure

(2 tower The rmaanitude the brnghter m tod

doan't aluvu nt 10
- adiows niott uq
O me i

OPAQUE =
TRANSPARENT
TEANSLUCENT ¢

dlstorts the path 1 budr the imdee .

No material can allew 1004 of
 Thoudil, :

QI() ver

i
fmfer medlum

aﬁ, sz THE SUN 1 AN o&mNﬂm 62 <TAR
oughtut FUION x
4H"— %$de + 2% + 2y,
i 1 Enéf { Cﬂ»a}'@d when twg
ki qg 'nuues tuge toforg
ney releaie e

(

SIFT REFERENCE GUIDE (V.1.1) — CREATING TIMELINES WITH THE SIFT WORKSTATION)

(Lvm mllmmnwm/mj — [2.B0OTSFTVM | ’

ooy

1|'>

~»

[log2timeline PARSING PLUGINS
apache2_error - Apache2 error log
file
chrome - Chrome history file
encase_dirlisting - CSV file that is
exported from encase
evt- Windows 2k/XP/2k3 Event Log
evix - Windows Event Log File (EVTX)
exif - Metadata information from files
usng ExifTool

kmark - Firefox bookmark file
firefox2 - Flreloxz browser history
llnlox! Firefox 3 hlslocy file

dirfisting - CSV file that is

exponed from FTK Imager Idkllsﬁvg)
generic_linux - Generic Linux logs
start with MMM DD HH:MM:SS
iehistory - index.dat file containg IE
history
fis - 1S W3C log file
lsm ISA text export log file

ntfs_change - csv output file from
JP-(NTFS Change |
mactime

pad: SIFT Workstation VM Appliance)

Bl Workstation Installation (7) |
J

» |8

|2 -~
= ,‘"" ‘ Login:

Password: forensics

sansforensics

P B) ¢

4. CONNECT IMAGE TO L |
$ sudo su la SIFT
'{Plug hard drive to physical | 5
| host and attachto SIFTVM | '

5. HARD DRIVE MOUNTING (if you are using log2timeline-sift and Single DD you can skip to 7-A)

) -

pt_ewf.py image.E01 /mnt/ewf

SINGLE OR SPLIT IMAGE (2 options): ;‘ (U mount -t ntfs -o ro,loop,show_sys_files,streams_interface=wil
t offset=#### /mnt/ewf/<image> /mnt/windows_mount/

L image.E01 /mnt/ewf/ \~’)

(MOUNT TO MOUNT POINT

(SINGLE INTY

\N mount -t ntfs -G

_sys_files,streams_interfaceswindows,offset=####4 image.dd /g

((SPLIT IMAGE (2 step pre

(& affuse image.001 /mnt/aff
\l mount ~t ntfs-3g o loop,ro,sho

mnt/aff/<image> /mnt/windows |

N COMPUTER

and INCIDENT RESPONSE

E PURPOSE OF THIS REFERENCE
IDE IS TO WALK THROUGH THE
ESS OF BOOTING THE SIFT
ORKSTATION, CREATING A TIMELINE

SUPER” OR "MICRO") AND '
REVIEWING IT.
" HOW TO CALCULATE THE OFFSET

FOR MOUNTING

mmis
2. Identify partition and byte offset
3. (Partition byte offset) x (bytes per
sector) = offset #### to use!

| Example: 63 X 512 = 32256

1. Run mmis to query partition layout
image.E01

Note: If needed, repeat for each
partition. Make new mount point:
mkdir /mnt/windows_mount2/

="

&Wk{:&;:‘ﬂlﬁ!ﬂ?ﬂlh&TﬂM

- Body file Inlhe
format

mcafee - Log file
mft- NTFS MFT file

|_errlog - ERRORLOG file
produced by MS SQL server
ntuser - NTUSER.DAT registry file

opera - Opera's global history file

exml OpenXMl. document peap
peap - PCAP fi
pdf dAvtilable POF document

metadata

prefetch - Prefetch directory
recycler - Recycle bin directory
restore 0.9 - Restore point directory
safari - Safari m«mlsl file

sam - SAM registry

security - SECURITY registry fil
m SetupAPl log file In

m::l Skype database
SOFTWARE registry file

sol - sdsgsg)aarllashcookleﬂle
squid - Squid access
(http_emulate off) -

Body
volatility - Volatility output files
(psscan2, sockscan2, ...)
win_link - Windows shorteut file {or
a link file)
wmiprov - wmiprov log file
xpfirewall - XP Firewall log

List plugins i log2timeline -f list

«.HELP EXPAND THIS LIST. BUILD
PLUGINS!!!

BY DAVID NIDES {12/16/2011))\f
TWITTER: @DA

EMAIL: DNIDES@KPMG.COM
CREDITS TO: ED GOINGS, ROB LE
KRISTINN GUDJONSSON, KPMG &
QUESTIONS/FEEDBACK-CONTACT

BLOG: DAVNADS BLOGSPOT com s

Red text - image/source

Blue text — mount point

Purple text - output file

Green text - log2timeline plugins
Brown text - TimeZone

8
!
1
[
|
|
|
|
l
|
|
|
[
|
|
v

(7-A: AUTOMATED SUPER TIMELINE CREATION
log2timeline-sift -0 ~z [TIMEZONE] -p [PARTITION #] -i [IMAGE FILE]

Lmsxlm(mnmm mount, and run): j

Xp (# logltimellne—sift -2 ESTSEDT -i image
S

WIN7 (# log2timeline-sift -win7 -z ESTSEDT -i image

(FOR PARTITION (mount and run using all applicable p

XP ij# log2timeline-sift ~z ESTSEDT -p 0 -i partig

WIN7 s log2timeline-sift -win7 -z ESTSEDT

{ OTHER USAGE EXAMPLES:

' Display list of available p
log2timeline -f list
Run log2timeline usg

log2timeline-sij

Help (man pag
| ¥ log2time

use only specific plugins:
preftch =z ESTSEDT -i image.dd

9

8. CSV j (/cases/timeline-output-folder)) ‘

e event, in the format of MM/DD/YYYY

Bf day, expressed in a 24h format, HH:MM:SS

= the timezone that was used to call the tool with.
® MACB meaning of the fields, comp w/ mactime format.

ce: Source short name (i.e. registry entries are REG)

ourcetype: Desc of the source (“Internet Explorer” instead of WEBHIST)

“type: Timestamp type (ie. “Last Accessed”, “Last Written”)

-user: Username associated with the entry, if one is available.

-host: Hostname associated with the entry, it one is available.

-short: Contains less text than the full description field.

-desc: where majority info is stored, the actual parsed desc of the entry.

-version: Version number of the timestamp object.

filename: Filename with the full path that contained the entry

-inode: inode number of the file being parsed.

-notes: Some input modules insert additional information in the form of a

note, which comes here. Or it can be used during the review.

format: Input module name used to parse the file.

-extra: Additional information parsed is joined together and put here.

5 r-P(

=¥ °
7-A&7-B
(4 INUAL “MICRO” TIMELINE CREATION) ««—~
» ONS] [-f FORMAT] [-2 TIMEZONE] [-0 OUTPUT MODULE] [-w HELP? OPTIONS? USAGE?)
_FILE/LOG_DIR [~] [FORMAT FILE OPTIONS] log2timeline -help
Log2timeline-sift -help

METADATA (using log2timeline or fis)

\LZ!__pmcess -help)

log!
mft.bos
OR Extract
#fls -m " -0 off
Convert body file fo!
_# mactime b fls.body

mft -0 mactime -r -z ESTSEDT -w
me/
pee using Sleuthkit:
dd > fis.body
prmat w/ mactime:

gtem data w/log2timeline from mounted file system]
=

(AR‘I’IFACTS (run 12| on mounted file plugins recursively)

2 file éystem:
DT -w

(‘Extract artifacts w/ log2timeline and ru
log2timeline -f firefox3,chrome -0 mactil
web.body /mnt/volume/
Convert body file format to CSV format w/ mactime®
_# mactime -b log2timeline.body ~d > log2timeline.csv

9. FILTER TIMELINE

Filter timeline with date range to include only:
12t_process -b timeline.csv MM-DD-YYYY..MM-DD-YYYY > filtered.csv
Filter timeline with keyword list (one term per line in keywords.txt):
12t_process -b timeline.csv -k keywords.txt > filtered.csv

What sources are in your timeline?

awk-F , ‘{print $6;) timeline.csv| grep-v sourcetype|sort | uniq

Find all LNK files that reference E Drive

grep“Shortcut LNK” timeline.csv| grep"E:”

FiindMountPoints2 entries that reference E Drive

grep“MountPoints2 key” timeline.csv} | grep“E drive”

grepUSB timeline.csv| grep“SetupAPILog”

(OTHER log2timeline Q 0)
OUTPUT FORMATS

Note: CSV is Default Output
-MacOS X i tool

<CEF - Common Event Format - ArcSight

-CFTL - XML file- CyberForensics TimeLab

visualization tool

CSV - comma separated value file

-Mactime - Both older and newer version of

the format supported for use by TSK's

mactime

-SIMILE - XML file - SIMILE timeline

visualization

-SQLite - SQLite database

~TLN - Tab Delimited File

-TLN - Format used by some of H Carvey

tools, expressed as a ASCH output

~TLNX - Fotmalused by wmeof H Carvey

tools, d as a XML

0. CONNECT TO SIFT)

SETTINGS -> OPTIONS -> Shared
s -> Always Enabled (Check)

.
y/ 2.SIFT Desktop > VMware-Shared-Drive

J Access from a Win Machine
\\SIFTWORKSTATION

ill

(1LREVIEWTIMELINE)

(Eile System ™M A C B Review timelines using:
Ext2/3 Modified Accessed Changed N/A | - Open, Soft, Filter with Excel
FAT Written Accessed N/A Created - - Import into SPLUNK
NTFS File Modified Accessed MFT Modified Created SIMILE
UFS Modified Accessed Changed N/A ('J\ Tapestry

Midterm |

* Ask questions today!
 Discussion is Q&A session

— Suggest topics for review in piazza!

* This review session does not/ can not cover all
possible topics!

Content

* Main topics
— Number representation
—C
— MIPS

* Plus general "Computer Architecture”
knowledge

e Everything till lecture 8 CALL — including
lecture 8

Old School Machine Structures

Application (ex: browser)

A :
Operating—
Compiler System
Software Assembler {Mac 15K)

Instruction Set
Architecture

Hardware Processor Memory |1/0 system

I Datapath & Control

v Digital Design

Circuit Design

transistors

12

New-School Machine Structures

(It's a bi

t more compllcatedl)

Software Hardware
Parallel Requests
. Warehouse
Assigned to computer Scale B
e.g., Search “cats” Computer &
Harness
Parallel Threads Parallelism &
Assigned to core Achieve High s
i olect
e.g., Lookup, Ads Performance ’ e Computer” e
Parallel Instructions Core ~ |.. .="Core Z‘/\
. . . ,f‘ \
>1 instruction @ one time Memory _.-1" (Cache) Projagt 3
e.g., 5 pipelined instructions - \
nE),ut»/Output Core \\
Parallel Data , TRy)
Lt : unctiona
>1 data item @ one time nstruction Unit(s) Unit(s)
e.g., Add of 4 pairs of words ﬁ«:ﬂ /K+BO/A/ +B]/A/ +B% +2;
Hardware descriptions — — :
L Main Memory Rl H
All gates functioning in — [
parallel at same time =1 Logic Gates
: D Project 2

6 Great Ideas in Computer Architecture

1. Abstraction

(Layers of Representation/Interpretation)

2. Moore’s Law (Designing through trends)

3.

Principle of Locality (Memory Hierarchy)

. Parallelism

Performance Measurement & Improvement

4
5.
6. Dependability via Redundancy

14

2: Moore’s Law

1013
HUMAN
v BRAIN
ELECTROMECHANICAL SOLID- VACUUM TRANSISTOR INTEGRATED CIRCUIT
STATE TUBE
o RELAY
MOUSE
CORE i7 QUAD) BRAIN
101 = =2 O
Predicts: PENTIUM 4 Q’coneznuo
. . PENTIUM Il '
100 [2X Transistors / chip PENTIUM I Semeal,
COMPAQ DNA
DESKPRO 386 COMPUTING?
o b every 2 years - & Tl
ALTAIR 8800 ‘ PENTIUM

10¢ = T PDP.:BM B ‘: QIBM AT-80286
o 35

CALCULATOINS PER SECOND PER $1000

UNIVAC | @ ©occ APPLEN
‘ PDP-10
0 (| | 1 | | | 1 1 | 1 | | 1 | 1 | 1
COLOSSUS
IBM IBM 704
HOLLERITH »
TABULATOR :
Ly A
10 € natonNa CALCULATOR Gordon Moore
ELLIS 3000 MODEL 1
ANALYTICAL ENGINE Intel Cofounder
g 22 2 88 8 8 § $8 8 8 2 8 £ 88§ 5 828¢2 258 8
¢ 22 2 282 &8 @8 & ¢ ¢ ¢ & 2 ¥ & 2288 3 3% & S8

SOURCE: RAY KURZWEIL, "THE SINGULARITY IS NEAR: WHEN HUMANS TRANSCEND BIOLOGY", P.67, THE VIKING PRESS, 2006. DATAPOINTS BETWEEN 2000 AND 1
2012 REPRESENT BCA ESTIMATES. 5

Great Idea #3: Principle of Locality/

Memory Hierarchy

EXPENSIVE

Processor SUPER FAST
SUPER EXPENSIVE
. TINY CAPACITY
/m FASTER
, LEVEL 1 (L1) CACHE

Y

SMALL CAPACITY

EDO, SD-RAM, DDR-SDRAM, RD-RAM , PHYSICAL MEMORY FAST
PRICED REASONABLY
and More... AVERAGE CAPACITY
SSD, Flash Drive SOLID STATE MEMORY AVERAGE SPEED
\ PRICED REASONABLY
4 \\ AVERAGE CAPACITY

£

y N

Mechanical Hard Drives VIRTUAL MEMORY

N
N

SLOW
CHEAP
LARGE CAPACTITY

,- s] \

Great Idea #4: Parallelism

Jane

Research

Composing Typing

<

Sue

Research

Composing Typing

Tom

<

_— -
— —

Research

Composing Typing

<

NN NE NN NN

IININININENE NN

1

=
N

Great Idea #5: Performance
Measurement and Improvement

* Tuning application to underlying hardware to
exploit:
— Locality
— Parallelism
— Special hardware features, like specialized instructions
(e.g., matrix manipulation)
* Latency
— How long to set the problem up
— How much faster does it execute once it gets going
— It is all about time to finish

18

Great |dea #6:
Dependability via Redundancy

* Redundancy so that a failing piece doesn’t
make the whole system fail

2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy
19

Key Concepts

* |[nside computers, everything is a number

 But numbers usually stored with a fixed size
— 8-bit bytes, 16-bit half words, 32-bit words, 64-bit
double words, ...
* Integer and floating-point operations can lead
to results too big/small to store within their
representations: overflow/underflow

Number Representation

Number Representation

* Value of i-th digit is d x Base' where i starts at O
and increases from right to left:
e 123,,=1,,x10,42 +2,, x 10, + 3,,x 10,°
= 1x100,, + 2x10,, + 3x1,,
=100, + 20,5 + 34
=123,
e Binary (Base 2), Hexadecimal (Base 16), Decimal
(Base 10) different ways to represent an integer

— Weuse 1, 5., 10,., to be clearer
(vs.1,, 4, 550 104)

22

Number Representation

Hexadecimal digits:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

FFFpex = 150X 16002 + 150X 16¢,1 + 15X 16,0
=3840,,, + 240,,, + 15,
= 4095

ten

1111 1111 1111, = FFF, ., = 4095

May put blanks every group of binary, octal, or
hexadecimal digits to make it easier to parse, like
commas in decimal

two ten

Signed Integers and
Two’s-Complement Representation

Signed integers in C; want %2 numbers <0, want %
numbers >0, and want one O

Two’s complement treats 0 as positive, so 32-bit
word represents 23?integers from
-231(-2,147,483,648) to 231-1 (2,147,483,647)

— Note: one negative number with no positive version
— Book lists some other options, all of which are worse
— Every computer uses two’s complement today
Most-significant bit (leftmost) is the sign bit,

since 0 means positive (including 0), 1 means
negative

— Bit 31 is most significant, bit O is least significant

24

Sign

0
0
0

Two’s-Complement Integers

Bit
D00 0000 0000 0000 0000 0000 0000 0000,,,, = 04
D00 0000 0000 0000 0000 0000 0000 0001,,,, = 1.,
D00 0000 0000 0000 0000 0000 0000 0010,,,, = 2

two ten

11111111111 1111 11211121 1111 1101, , = 2,147,483,645

P = L, O O O

two ten
11111111111 1111 1111 1111 1111 1110, = 2,147,483,646,,,
11111111111 1111 1111 1111 1111 1111, = 2,147,483,647 .,
D00 0000 0000 0000 0000 0000 0000 0000,,,, =—2,147,483,648,.,
D00 0000 0000 0000 0000 0000 0000 0001,,,, =—2,147,483,647,.,
D00 0000 0000 0000 0000 0000 0000 0010,,,, =—2,147,483,646,,,
11111111111 1111 171111111 1111 1101, = —34.,
11111111111 111111111111 1111 1110, =2

ten

111 1111171111111 1111 1111 1111 1111, =-1

=

two — ten

25

Ways to Make Two’s Complement

* For N-bit word, complement to 2,/

— For 4 bit number 3,,,=0011,,,,, two’s complement
(i.e. -3,.,) would be
16,.,-3:.n=13,, Or 10000,,,- 0011,,, = 1101,,,
* Here is an easier way: 3., 0011,

— Invert all bits and add 1 o
Bitwise complement 1100,

- 1
— Computers actually do it like this, too 3., 1101

two

two
26

Two’s-Complement Examples

* Assume for simplicity 4 bit width, -8 to +7

represented
3 0011 3 0011 -3 1101
+2 0010 +(-2) 1110 +(-2) 1110
5 0101 1 10001 511011

Overflow when

magnitude of result

too big small to fit 7 0111 -8 100
+1 0001 +(-1) 1111

into result . Carry into MSB =
representation -8 1000 +7 10111 Carry Out MSB

Overflow! Overflow!
Carry into MSB #
Carry in = carry from less significant bits Carry Out MSB
27

Carry out = carry to more significant bits

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

O Oto+31

O <15 to +16

Suppose we had a 5-bit word. What
integers can be represented in two’s
complement?

O Oto+31

N

O <15 to +16

29

C Programming

Quiz: Pointers

void foo(int *x, int *y)
{ int t;
if (*x > *y) { t = *y; *y = *x; *x
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);

printf("a=%d b=%d c=%d\n", a, b, c);
A:a=3 b=2 c=1
B:a=1 b=2 c¢=3

Resultis: C:a=1 b=3 c=2
D:a=3 b=3 c¢c=3
E:a=1 b=1 c=1

Arrays and

Pointers

int
foo(int array][],

unsigned int size)

printf (“$d\n”, sizeof (array)); * |

int
main (void)
{
int a[l10], b[5];

. What does this print (64bit) 8

... because array is really

a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

int c¢[] = {1, 3, 2, 5, 6}; | What does this print? 40

.. foo(a, 10).. foo(c, 5) .. «— |
printf (“%$d\n”, sizeof(c));

32

Quiz:
int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p;
(*pp)++;
(*(*pp)) ++;
printf ("%d\n", *p);

Result is:
A: 2

B:
C:
D:
E:

Z U0 P W

one of the above

C M emory Memory Address

(32 bits assumed here)

Management .
g FFFF FFFF, stack
* Program’s address space 7 7 _1_ 7
contains 4 regions:
— stack: local variables inside
functions, grows downward
— heap: space requested for T
dynamic dataviamalloec();, @ p———l—m — —
resizes dynamically, grows heap
upward
— static data: variables declared static data
outside functions, does not grow
or shrink. Loaded when program
starts, can be modified. code

— code: loaded when program ~ 0000 0000},
starts, does not change

34

The Stack

Every time a function is called, a new frame
is allocated on the stack

: fooA fooB();
Stack frame includes: ooR() { fooB(); }

fooB() { fooC(); }

— Return address (who called me?) fooC() { fooD(); }
— Arguments
— Space for local variables fooA frame
Stack frames contiguous
blocks of memory; stack pointer fooB frame

indicates start of stack frame

When function ends, stack frame is tossed
off the stack; frees memory for future stack
frames

We'll cover details later for MIPS processor

fooC frame

fooD frame

Stack Pointer —»

Faulty Heap Management

 What is wrong with this code?
* Memory leak!

int foo() {
int *value = malloc(sizeof(int));
*value = 42;
return *value;

}

36

Using Memory You Don’t Own

* What is wrong with this code?

int* init array(int *ptr, int new size) {
ptr = realloc(ptr, new size*sizeof(int));
memset (ptr, 0, new size*sizeof(int));
return ptr;

}

int* fill fibonacci(int *fib, int size) {
int 1i;
init array(fib, size);
/* £ib[0] = 0; */ fib[1l] = 1;
for (i=2; i<size; i++)
fib[i] = fib[i-1] + fib[i-2];
return fib;

37

Using Memory You Don’t Own

* Improper matched usage of mem handles

int* init array(int *ptr, int new size) {

}

ptr = realloc(ptr, new size*sizeof(int));
memset (ptr, 0,N\new size*sizeof(int));
return ptr;

Remember: real 10C may move entire block

int* fill fibonacci(int *fib, int size) {

int 1i;

/* oops, forgot: fib = */ init array(fib, size);

/* £ib[0] = 0; */ fib[1l] = 1;

for (i=2; i<size; 1i++) What if array is moved to
fib[i] = fib[i-1] + fib[i-2]; new location?

return fib;

38

And In Conclusion, ...

Pointers are an abstraction of machine memory
addresses

Pointer variables are held in memory, and pointer
values are just numbers that can be manipulated
oy software

n C, close relationship between array names and
pointers

Pointers know the type of the object they point
to (except void *)
Pointers are powerful but potentially dangerous

And In Conclusion, ...

* C has three main memory segments in which
to allocate data:

— Static Data: Variables outside functions
— Stack: Variables local to function
— Heap: Objects explicitly malloc-ed/free-d.

 Heap data is biggest source of bugs in C code

MIPS

Addition and Subtraction of Integers

Example 1
* How to do the following C statement?
a=b+c+d-e; a=((b+c)+d)-e;

b—>Ssl; ¢ > 5s2;d—>5s3;e > Ss4;a—> Ss0
* Break into multiple instructions

add $t0, Ssl, S$Ss2 # temp = b + ¢

add $t0, $t0, S$s3 # temp = temp + d

sub $s0, St0, $s4 # a = temp - e

* A single line of C may break up into several lines of MIPS.

* Notice the use of temporary registers — don’t want to modify
the variable registers $s
* Everything after the hash mark on each line is ignored

(comments)

42

Overflow handling in MIPS

* Some languages detect overflow (Ada),
some don’t (most C implementations)

* MIPS solution is 2 kinds of arithmetic instructions:
— These cause overflow to be detected
 add (add)
* add immediate (addi)
* subtract (sub)
— These do not cause overflow detection
* add unsigned (addu)

» add immediate unsigned (addiu)
* subtract unsigned (subu)

* Compiler selects appropriate arithmetic
— MIPS C compilers produce addu, addiu, subu

43

Question:

We want to translate = *y +1 into MIPS
(%, v int pointers stored in: $s1)
A: addi ,Ss1,1
B: 1 ;1 1
sx $sl,0€$S ;
C: 1w gt0,0(Ssl)
addi tO,St , 1
SW £0,0()
D SW %t0,0(gsl)
addi tO,St , 1
lw 0, 0()
E 1 1($t0
W §s1;0{%E0)

44

Executing a Program

Memory
Processor
Read
Instruction
Control Bits
-
+ + \\ Program
Datapath 4
PC L+ Tnstruction Bytes
Address
Registers——
Arithmetic & Logic Unit Data

The PC (program counter) is internal register inside processor holding byte
address of next instruction to be executed.

Instruction is fetched from memory, then control unit executes instruction

using datapath and memory system, and updates program counter (default is
add +4 bytes to PC, to move to next sequential instruction)

Start:

Exit:

Question!

addi $s0,Szero,0
slt $t0,$s0,Ssl

beq

sl

1 S$t1,S$s0,2

addu S$tl1,$tl,Ss5

1w

Stl,0(Stl)

add S$s4,$s4,Stl
addi $s0,$s0,1

J

Start

$St0,$zero,Exit

What is the code above?

A: while loop

do ... while loop
. for loop

: AorC
Not a loop

mo oOow

46

MIPS Function Call Conventions

Registers faster than memory, so use them

Sa0—-S$a3: four argument registers to pass
parameters (54 - S7)

Sv0, Sv1:two value registers to return
values ($2,53)

Sra: one return address register to return to
the point of origin ($31)

47

Instruction Support for Functions (1/4)

... sum(a,b);... /* a,b:5s0,8s1 */

}
C int sum(int x, int y) {
return x+y;

}
address (shown in decimal)

1000 . .
M 1004 n MIPS, all instructions are 4
I 1008 oytes, and stored in memory
P igiz just like data. So here we show
S the addresses of where the

2000 programs are stored.

2004

48

Instruction Support for Functions (2/4)

... sum(a,b);...

}
C int sum(int x, int y) {
return x+y;

}
address (shown in decimal)
1000 add $Sa0,S$s0,Szero
M 1004 add sail,s$s1,$zero
I 1008 addi Sra,Szero, 1016
P
S

1012 5 sum
1016 ..

2000 sum: add S$vO0,S$a0,Sal

2004 jr Sra # new instr. “jump register”
49

N o o- L

}

Instruction Support for Functions (3/4)

.. sum(a,b);... /* a,b:$s0,8s1 */

int sum(int x, int y) {
return x+y;

}

e Question: Why use jr here? Why not use j?

e Answer: sum might be called by many places, so we can’t
return to a fixed place. The calling proc to sum must be able

to say “return here” somehow.

2000@ add SvO0,S$a0,Sal

2004 jr Sra # new instr. “jump register”

50

Instruction Support for Functions (4/4)

e Single instruction to jump and save return address:
jump and link (7al)

e Before:
1008 addi Sra,Szero,1016 # Sra=1016
1012 j sum # goto sum
o After:

1008 jal sum # Sra=1012,goto sum
* Why have a jal?

— Make the common case fast: function calls very common.

— Don’t have to know where code is in memory with jal!

51

Question

e Which statement is FALSE?

A: MIPS uses jal to invoke a function and
jr to return from a function

B: jalsaves PC+1lin Sra

C: The callee can use temporary registers
(Sti) without saving and restoring them

D: The caller can rely on save registers (Ssi)
without fear of callee changing them

Stack Before, During, After Call

High address

$fp—

$Sp—

Low address

$fp—

$sp—~

Saved argument
registers (if any)

Saved return address

Saved saved
registers (if any)

Local arrays and
structures (if any)

b.

$fp—

$sp—

53

Basic Structure of a Function

Prologue

entry label:

addi Ssp,SSsp, -framesize

sw Sra, framesize-4(S$Ssp) # save Sra
save other regs if need be

ra

Body --- (call other functions...)

memory
Epilogue

restore other regs if need be

lw Sra, framesize-4(Ssp) # restore S$Sra
addi Ssp,Ssp, framesize

jr Sra

54

Instruction Formats

I-format: used for instructions with
immediates, 1w and sw (since offset counts as

an immediate), and branches (beqg and bne)
— (but not the shift instructions; later)

J-format: used for j and jal

R-format: used for all other instructions

t will soon become clear why the instructions
nave been partitioned in this way

55

R-Format Instructions (1/5)

* Define “fields” of the following number of bits

each:6+5+5+5+5+6=32

| 6 5 5 5 5 6 |
* For simplicity, each field has a name:
‘ opcode| rs rt rd |shamt| funct ‘

* Important: On these slides and in book, each field is
viewed as a 5- or 6-bit unsigned integer, not as part of a
32-bit integer

— Consequence: 5-bit fields can represent any number 0-31, while
6-bit fields can represent any number 0-63

56

-Format Instructions (2/4)

* Define “fields” of the following number of bits each:
6+5+5+16 =32 bits

| 6 5 5 16

— Again, each field has a name:

‘ opcode rs rt immediate

— Key Concept: Only one field is inconsistent with R-format.
Most importantly, opcode is still in same location.

I-Format Example (2/2)

e MIPS Instruction:

addi

$21,$22,-50

Decimal/field representation:

| 8 22 21 -50 |
Binary/field representation:
| 001000[10110/10101| 1111111111001110 |

hexadecimal representation: 22D5 FFCE,

Branch Example (1/2)

Start counting from

* MIPS Code: instruction AFTER the
Loop: beq $9,80, branch
addu $8,58,510
addiu $9,59, -1 1
]
End:
* |-Format fields:
opcode =4 (look up on Green Sheet)
rs=9 (first operand)
rt =0 (second operand)

immediate =3

59

Branch Example (2/2)

e MIPS Code:

Loop: beq $9,50,
addu $8,$8,510
addiu $9,59, -1

J
End:

31 Field representation (decimal): O

[4 | 9 | 0 | 3 |

31 Field representation (binary): 0

]000100/01001{00000| 0000000000000011 |

60

J-Format Instructions (2/4)

3-1 Define two “fields” of these bit widths:

| 6 | 26

s As usual, each field has a name:

‘opcode‘ target address

* Key Concepts:

— Keep opcode field identical to R-Format and
I-Format for consistency

— Collapse all other fields to make room for large
target address

61

Summary

* |-Format: instructions with immediates,
1w/sw (offset is immediate), and beg/bne

— But not the shift instructions

— Branches use PC-relative addressing
I:‘opcode‘ rs ‘ rt | immediate ‘

* J-Format: j and jal (but not jr)
— Jumps use absolute addressing
k‘opcode‘ target address ‘
* R-Format: all other instructions
R:‘opcode‘ rs ‘ rt | rd ‘Shamt‘ funct ‘

Assembler Pseudo-Instructions

* Certain C statements are implemented
unintuitively in MIPS

— e.g. assignment (a=Db) via add Szero

 MIPS has a set of “pseudo-instructions” to make
programming easier

— More intuitive to read, but get translated into actual
instructions later
 Example:
move dst, src

translated into
addi dst,src,O

63

Multiply and Divide

 Example pseudo-instruction:
mul $rd, $rs,Srt

— Consists of mult which stores the output in special hi and
lo registers, and a move from these registers to Srd

mult Srs,S$rt
mflo $rd

* mult and div have nothing important in the xd field
since the destination registers are hi and lo

* mfhi and m£f1lo have nothing important in the rs and
rt fields since the source is determined by the
instruction (see COD)

Question

Which of the following place the address of
LOOP in Sv0?
1) la $tl1, LOOP

1 2

lw $vO0, 0($tl) AT, T,
2) jal LOOP B)T, T,
LOOP: addu $v0, Sra, S$zero C)¥, T,
D)F, T,

3) la $v0, LOOP E)F, F,

H M 3 = 3 W

Steps in compiling a C program

Compiler converts a single HLL file S ——
into a single assembly language file. L

Compiler

Assembler removes pseudo-
Instructions, converts what it can to
machine language, and creates a
checklist for the linker (relocation
table). A .s file becomes a .o file.

e

Assembly program: foo.s

Y
Assembler
/.
= Does 2 passes to resolve addresses, Object (machiEE T

handling internal forward references |
7

Linker combines several . o files and Linker
resolves absolute addresses.)

= Enables separate compilation, libraries
i ’ Executable (mach lan m): a.out
that need not be compiled, and (l g pgm)

resolves remaining addresses Y

Loader loads executable into memory Loader
and begins execution. '

Memory

66

Pseudo-instruction Replacement

* Assembler treats convenient variations of machine
language instructions as if real instructions

Pseudo: Real:

subu $sp,$sp,32 addiu Ssp,Ssp,-32

sd $a0, 32(S$sp) sw $a0, 32(S$sp)
sw Sal, 36(Ssp)

mul St7,$t6,St5 mult S$t6,St5
mflo S$St7

addu StO,Sté6,1 addiu tO,St6,1

ble $t0,100,loop slti Sat,$t0,101
bne Sat,$0,loop

la $a0, str lui Sat,left(str)

ori $a0,S$at,right(str)

67

Question

At what point in process are all the machine
code bits generated for the following assembly
instructions:

1) addu $6, S7, $8

2) Jjal fprintf
A: 1) & 2) After compilation
B: 1) After compilation, 2) After assembly
C: 1) After assembly, 2) After linking
D: 1) After assembly, 2) After loading
E: 1) After compilation, 2) After linking

INTRO TO CACHES

New-School Machine Structures
(It's a bit more compllcatedl)

Software Hardware
Parallel Requests

Assigned to computer Warehg)clgslg ¥
e.g., Search “Katz” Computer &
Harness
Parallel Threads 5 110jicm g How do
Assigned to core Achieve Hig we know?
e.g., Lookup, Ads Performance

Parallel Instructions

>1 instruction @ one time
e.g., 5 pipelined instructions

Parallel Data

>1 data item @ one time
e.g., Add of 4 pairs of words

Hardware descriptions
All gates @ one time

Programming Languages

Core
Functional

' Logic Gates

70

Components of a Computer

Processor
Enable?

Read/Write

Address

Write
Data

Read
Data

\ J
Y \ J

Processor-Memory Interface

|/O-Memory Interfaces
71

Problem: Large memories slow?
Library Analogy

* Finding a book in a large library takes time

— Takes time to search a large card catalog — (mapping
title/author to index number)

— Round-trip time to walk to the stacks and retrieve the
desired book.
* Larger libraries makes both delays worse

* Electronic memories have the same issue, plus
the technologies that we use to store an
individual bit get slower as we increase density
(SRAM versus DRAM versus Magnetic Disk)

However what we want is a large yet fast memory!

72

Processor-DRAM Gap (latency)

UProc 60%/year
TO00 | N

Q
U A
i R S | Processor-Memory
g 100 Performance Gap:
- (growing 50%/yr)
O
G
o 10 | - e p DRAM
a¥ [7%/year
1 O 1 a MM << 1NN O NN O\IO IH N N < 1D O N0 O O

00 00 00O 00 O O 00 00O 0O 0 Oy O O O O O O Oy O O O

O OO OO0 OO O O O O OO Oy O OO O OO O OO OO O OO0 O

™ = e e]] e N

Time

1980 microprocessor executes ~one instruction in same time as DRAM access
2015 microprocessor executes ~1000 instructions in same time as DRAM access

Slow DRAM access could have disastrous impact on CPU performagce!

Big Idea: Memory Hierarchy

Processor

Inner Increasing
distance from
. Level 1 pProcessor,
Levels in decreasing
memory / Level 2 speed
hierarchy Level 3
Outer
Level n
< >

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down. Why?

What to do: Library Analogy

Want to write a report using library books

Go to library, look up relevant books, fetch from
stacks, and place on desk in library

If need more, check them out and keep on desk

— But don’t return earlier books since might need
them

You hope this collection of ~10 books on desk

enough to write report, despite 10 being only a

tiny fraction of books available

s)

Memory Address (one dot per acces

Real Memory Reference Patterns

38 - — -
' — B3 - . o & I
= —ETTI A i ,wﬂu pe——

36 PR LT L .. SR 2 - AT " - T

341
b
32 r LB L ’ . LR » s
PRanqunimn m-mmuq-llmd«lm uy ll'll'l llll ULIRL | " . . —— — S e
=2 5 =Ny R {!\ tm LY ‘H‘ﬂ.ﬂ‘!ﬂq_!‘ Sﬁ,l‘l&l '
30 - - p -)qu.‘, . n _ '— ‘&S 3, y '..!' " = . -e —_
N N L I A.‘ g -Ju\n 1 4. -
H"- -~ x °e - comd WP

o g S e e S N~ - ——

-.' Q..WW*“ ,u‘,q,.’-

- -

20' -~ IR SIIH s W A PSP M MM AU L L M 1Ly Sn e v B . . f i —— e “in m*

" AR R ' SRR . - - .
e 0.. e .vl"..l-o‘.-v"-.-‘

= TWYIET EAR A 00 10N LRGN I EUE (138 W0 T Sl I - . s cemm = — ——-——Wl:

18 -y
i Ime

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual
Memory. IBM Systems Journal 10(3): 168-192 (1971)

Big Idea: Locality

e Temporal Locality (locality in time)
— Go back to same book on desktop multiple times

— If a memory location is referenced, then it will tend to
be referenced again soon

* Spatial Locality (locality in space)

— When go to book shelf, pick up multiple books on J.D.
Salinger since library stores related books together

— |If a memory location is referenced, the locations with
nearby addresses will tend to be referenced soon

Memory Reference Patterns

38" %3
" — 3 f — o Satalh gl
| pupp——— b ekt T A e
s,

Temporal

Locality

o B - - —a'—'

i . ﬁﬂ 4 ‘
24 c© ee—— e . . e ceue ' . . ,u-o L Ay J N A s =

T A LA —

Memory Address (one dot per access)

b oo P

22+ - . ————
et Spatial

20' LTI R A DI AP0 SRR AL L L MME L ATy e s i B — - aF r ° -
J LR TR AR B e Locality =
l}rmmnsunmulmumunnmmuul e nean. uu.ur- | I “ o —_— - \’

18 L

Donald J. Hatfield, Jeanette Gerald: Progrlme

Restructuring for Virtual Memory. IBM Systems
Tournal 10(3): 16R-192 (1971)

Principle of Locality

* Principle of Locality: Programs access small
portion of address space at any instant of time
(spatial locality) and repeatedly access that
portion (temporal locality)

* What program structures lead to temporal
and spatial locality in instruction accesses?

 In data accesses?

79

Memory Reference Patterns

Address n loop iterations .
Q
. o o o L e o o °
Instruction| _° .° .° O e
fetches |.° o
subroutine subroutine
Stack call ° \return
(o] Q (o] (o] (o] (o] (o] o (o]
accesses o _ - ° .\, ..
° argument access e © 0 o o
(o] (o]
(o]
Data
accesses scalar accges
o e © o o o o o Time

Cache Philosophy

* Programmer-invisible hardware mechanism to
give illusion of speed of fastest memory with
size of largest memory

— Works fine even if programmer has no idea what a
cache is

— However, performance-oriented programmers
today sometimes “reverse engineer” cache design
to design data structures to match cache

Memory Access without Cache

* Load word instruction: 1w $t0,0(Stl)
* Stl contains 1022,,, Memory[1022] = 99

= W

Processor issues address 1022, to Memory
Memory reads word at address 1022, (99)
Memory sends 99 to Processor

Processor loads 99 into register StO

82

Adding Cache to Computer

Processor
Enable?

Read/Write

1 MO a
"N\ C&ZIoLC T O-
e ()

Arithmetic & Logic Unit
(ALV)

Processor-Memory Interface I/O-Memory Interfaces

83

Memory Access with Cache

* Load word instruction: 1w $t0,0(St1l)
* St contains 1022, Memory[1022] = 99

* With cache: Processor issues address 1022, to
Cache

1. Cache checks to see if has copy of data at address
1022,

2a. If finds a match (Hit): cache reads 99, sends to processor

2b. No match (Miss): cache sends address 1022 to Memory
l. Memory reads 99 at address 1022
II. Memory sends 99 to Cache
lll. Cache replaces word with new 99
IV. Cache sends 99 to processor

2. Processor loads 99 into register St0

ten

84

Cache “Tags”

* Need way to tell if have copy of location in
memory so that can decide on hit or miss

* On cache miss, put memory address of block
in “tag address” of cache block

1022 placed in tag next to data from memory (99)

Tag Db

-
252 12 . From earlier
‘ 1022 99 ‘ instructions

131 7 ::::;77’
2041 20

85

Anatomy of a
16 Byte Cache,
4 Byte Block

. : : 32-bit
Operations: s
1. Cache Hit
2. Cache Miss

3. Refill cache from
memory

Processor

* Cache needs Address
Tags to decide if
Processor Address is a
Cache Hit or Cache Miss

— Compares all 4 tags

