
CS	110
Computer	Architecture	

Caches	Part	1

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Processor

Control

Datapath

Adding	Cache	to	Computer

2

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Cache

Processor-DRAM	Gap	(latency)

3

Time

µProc	60%/year

DRAM
7%/year

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance	Gap:
(growing	50%/yr)

Pe
rfo

rm
an
ce

1980	microprocessor	executes	~one	instruction	in	same	time	as	DRAM	access
2015	microprocessor	executes	~1000	instructions	in	same	time	as	DRAM	access

Slow	DRAM	access	could	have	disastrous	impact	on	CPU	performance!	

Big	Idea:	Memory	Hierarchy
Processor

Size	of	memory	at	each	level

Increasing
distance	from
processor,
decreasing		
speed

Level	1

Level	2

Level	n

Level	3

.	.	.

Inner

Outer

Levels	in	
memory	
hierarchy

As	we	move	to outer	levels	the	latency	goes	up
and	price	per	bit	goes	down.	Why?

4

Big	Idea:	Locality

• Temporal	Locality	(locality	in	time)
– Go	back	to	same	book	on	desktop	multiple	times
– If	a	memory	location	is	referenced,	then	it	will	tend	to	
be	referenced	again	soon

• Spatial	Locality (locality	in	space)
– When	go	to	book	shelf,	pick	up	multiple	books	on	J.D.	
Salinger	since	library	stores	related	books	together

– If	a	memory	location	is	referenced,	the	locations	with	
nearby	addresses	will	tend	to	be	referenced	soon

5

Memory	Reference	Patterns

Donald J. Hatfield, Jeanette Gerald: Program
Restructuring for Virtual Memory. IBM Systems
Journal 10(3): 168-192 (1971)

Time

M
em

or
y	
Ad

dr
es
s	(
on

e	
do

t	p
er
	a
cc
es
s)

Spatial
Locality

Temporal
Locality

Principle	of	Locality

• Principle	of	Locality:	Programs	access	small	
portion	of	address	space	at	any	instant	of	time	
(spatial	locality)	and	repeatedly	access	that	
portion	(temporal	locality)

• What	program	structures	lead	to	temporal	
and	spatial	locality	in	instruction accesses?	

• In	data accesses?

7

Memory	Reference	Patterns
Address

Time

Instruction
fetches

Stack
accesses

Data
accesses

n	loop	iterations

subroutine	
call

subroutine	
return

argument	access

scalar	accesses

Cache	Philosophy
• Programmer-invisible	hardware	mechanism	to	
give	illusion	of	speed	of	fastest	memory	with	
size	of	largest	memory
–Works	fine	even	if	programmer	has	no	idea	what	a	
cache	is

– However,	performance-oriented	programmers	
today	sometimes	“reverse	engineer”	cache	design	
to	design	data	structures	to	match	cache

9

Memory	Access	with	Cache
• Load	word	instruction:	lw $t0,0($t1)
• $t1	contains	1022ten,	Memory[1022]	=	99
• With	cache:	Processor	issues	address	1022ten	to	
Cache
1. Cache	checks	to	see	if	has	copy	of	data	at	address	

1022ten
2a. If	finds	a	match	(Hit):	cache	reads	99,	sends	to	processor
2b. No	match	(Miss):	cache	sends	address	1022	to	Memory

I. Memory	reads	99	at	address	1022ten
II. Memory	sends	99	to	Cache
III. Cache	replaces	word	with	new	99
IV. Cache	sends	99	to	processor

2. Processor	loads	99	into	register	$t0
10

Cache	“Tags”
• Need	way	to	tell	if	have	copy	of	location	in	
memory	so	that	can	decide	on	hit	or	miss

• On	cache	miss,	put	memory	address	of	block	
in	“tag	address”	of	cache	block
1022	placed	in	tag	next	to	data	from	memory	(99)

11

Tag Data

252 12
1022 99
131 7
2041 20

From	earlier
instructions

Anatomy	of	a	
16	Byte	Cache,	
4	Byte	Block

• Operations:
1. Cache	Hit
2. Cache	Miss
3. Refill	cache	from	

memory

• Cache	needs	Address	
Tags	to	decide	if	
Processor	Address	is	a	
Cache	Hit	or	Cache	Miss
– Compares	all	4	tags

12

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

Tag Data

252 12
1022 99
131 7
2041 20

Tag Data

252 12
1022 99
511 11
2041 20

Cache	Replacement
• Suppose	processor	now	requests	location	511,	which	
contains	11?

• Doesn’t	match	any	cache	block,	so	must	“evict”	one	
resident	block	to	make	room
– Which	block	to	evict?

• Replace	“victim”	with	new	memory	block	at	address	511

13

Block	Must	be	Aligned	in	Memory

• Word	blocks	are	aligned,	so	binary	address	of	
all	words	in	cache	always	ends	in	00two

• How	to	take	advantage	of	this	to	save	
hardware	and	energy?

• Don’t	need	to	compare	last	2	bits	of	32-bit	
byte	address	(comparator	can	be	narrower)

=>	Don’t	need	to	store	last	2	bits	of	32-bit	byte	
address	in	Cache	Tag	(Tag	can	be	narrower)

14

Anatomy	of	a	32B	
Cache,	8B	Block

15

• Blocks	must	be	aligned	
in	pairs,	otherwise	
could	get	same	word	
twice	in	cache

Ø Tags	only	have	even-
numbered	words

Ø Last	3	bits	of	address	
always	000two

Ø Tags,	comparators	can	
be	narrower	

• Can	get	hit	for	either	
word	in	block

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

42
1947

12

130
2040

1000
7
20

-10

Hardware	Cost	of	
Cache

• Need	to	compare	every	
tag	to	the	Processor	
address

• Comparators	are	
expensive

• Optimization:	use	2	
“sets”	=>	½	comparators

• 1	Address	bit	selects	
which	set

• Compare	only	tags	from	
selected	set

• Generalize	to	more	sets
1616

Processor

32-bit
Address

Tag Data

32-bit
Data

Cache
32-bit
Address

32-bit
Data

Memory

Tag Data

Set	0

Set	1

Tag Data

Tag Data

Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

17

Processor	Address	(32-bits	total)

What	is	limit	to	number	of	sets?
• For	a	given	total	number	of	blocks,	we	can	
save	more	comparators	if	have	more	than	2	
sets

• Limit:	As	Many	Sets	as	Cache	Blocks	=>	only	
one	block	per	set	– only	needs	one	
comparator!	

• Called	“Direct-Mapped”	Design

18

Block offsetIndexTag

Direct	Mapped	Cache	Ex:	
Mapping	a	6-bit	Memory	Address

• In	example,	block	size	is	4	bytes/1	word
• Memory	and	cache	blocks	always	the	same	size,	unit	of	transfer	between	

memory	and	cache
• #	Memory	blocks	>>	#	Cache	blocks

– 16	Memory	blocks	=	16	words	=	64	bytes	=>	6	bits	to	address	all	bytes
– 4	Cache	blocks,	4	bytes	(1	word)	per	block
– 4	Memory	blocks	map	to	each	cache	block

• Memory	block	to	cache	block,	aka	index:	middle	two	bits
• Which	memory	block	is	in	a	given	cache	block,	aka	tag:	top	two	bits

19

05 1

Byte	Within	Block

Byte	Offset

23

Block	Within	$

4

Mem Block	Within
$	Block

Tag Index

One	More	Detail:	Valid	Bit

• When	start	a	new	program,	cache	does	not	
have	valid	information	for	this	program

• Need	an	indicator	whether	this	tag	entry	is	
valid	for	this	program

• Add	a	“valid	bit”	to	the	cache	tag	entry
0	=>	cache	miss,	even	if	by	chance,	address	=	tag
1	=>	cache	hit,	if	processor	address	=	tag

20

Caching:		A	Simple	First	Example

00
01
10
11

Cache

Main	Memory

Q:	Where	in	the	cache	is	
the	mem block?

Use	next	2	low-order	
memory	address	bits	–
the	index	– to	determine	
which	cache	block	(i.e.,	
modulo	the	number	of	
blocks	in	the	cache)

Tag Data

Q:	Is	the	memory	block	in	
cache?
Compare	the	cache	tag	to	the	
high-order	2	memory	address	
bits	to	tell	if	the	memory	
block	is	in	the	cache	
(provided	valid	bit	is	set)

Valid

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

One	word	blocks
Two	low	order	bits	(xx)	
define	the	byte	in	the
block	(32b	words)

Index

21

• One	word	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache	Example

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31	30							.	.	.							 13	12		11					.	.	.							 2		1		0
Byte	offset

What	kind	of	locality	are	we	taking	advantage	of?

20

Data

32

Hit

22

Valid	bit	
ensures	

something	
useful	in	
cache	for	
this	index

Compare	
Tag	with	

upper	part	of	
Address	to	
see	if	a	Hit

Read	
data	
from	
cache	
instead	

of	
memory	
if	a	Hit

Comparator

• Four		words/block,	cache	size	=	1K	words

Multiword-Block	Direct-Mapped	Cache

8
Index

2

DataIndex TagValid
0
1
2
.
.
.

253
254
255

31	30			.	.	.						 13	12 11				.	.	.				4 3		2		1		0 Byte	offset

20

20Tag

Hit Data

32

Word	offset

What	kind	of	locality	are	we	taking	advantage	of?
23

Cache	Names	for	Each	Organization
• “Fully	Associative”:	Line	can	go	anywhere
– First	design	in	lecture
– Note:	No	Index	field,	but	1	comparator/	line

• “Direct	Mapped”:	Line	goes	one	place	
– Note:	Only	1	comparator
– Number	of	sets	=	number	blocks

• “N-way	Set	Associative”:	N	places	for	a	line
– Number	of	sets	=	number	of	lines/	N
– N	comparators
– Fully	Associative:	N	=	number	of	lines
– Direct	Mapped:	N	=	1

24

Range	of	Set-Associative	Caches
• For	a	fixed-size	cache,	and	a	given	block	size,	each	
increase	by	a	factor	of 2	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	of	“ways”)	
and	halves	the	number	of	sets	–
• decreases	the	size	of	the	index	by	1	bit	and
increases	the	size	of	the	tag	by	1	bit

25

Block offsetIndexTag

More	Associativity	(more	ways)

Question
• For	a	cache	with	constant	total	capacity,	 if	we	
increase	the	number	of	ways	by	a	factor	of	2,	
which	statement	is	false:

• A:	The	number	of	sets	could	be	doubled
• B:	The	tag	width	could	decrease
• C:	The	block	size	could	stay	the	same
• D:	The	block	size	could	be	halved
• E:		Tag	width	must	increase

26

Midterm	I

27

Total	Cash	Capacity	=

28

Associativity	*		#	of	sets		*		block_size
Bytes	=	blocks/set		*		sets		*		Bytes/block	

Byte	OffsetTag Index

C	=	N	*		S		*		B

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)

Clicker	Question:		C	remains	constant,	S	and/or	B	can	change	such	that	
C	=	2N	*	(SB)’	=>	(SB)’	=	SB/2

Tag_size =	address_size – (log2(S)	+	log2(B))	=	address_size – log2(SB)

Second-
Level
Cache
(SRAM)

Typical	Memory	Hierarchy
Control

Datapath

Secondary
Memory
(Disk

Or	Flash)

On-Chip	Components

RegFile

Main
Memory
(DRAM)Data

Cache
Instr
Cache

Speed	(cycles):								½’s												 1’s																	 10’s												 100’s							 1,000,000’s

Size	(bytes):				 100’s			 10K’s																									M’s																				G’s																						T’s

29

• Principle	of	locality	+	memory	hierarchy	presents	programmer	with	
≈	as	much	memory	as	is	available	in	the	cheapest technology	at	the	
≈	speed	offered	by	the	fastest technology

Cost/bit:									highest																																																																													 lowest

Third-
Level
Cache
(SRAM)

Handling	Stores	with	Write-Through

• Store	instructions	write	to	memory,	changing	
values

• Need	to	make	sure	cache	and	memory	have	same	
values	on	writes:	2	policies

1)	Write-Through	Policy:	write	cache	and	write	
through	the	cache	to	memory
– Every	write	eventually	gets	to	memory
– Too	slow,	so	include	Write	Buffer	to	allow	processor	to	
continue	once	data	in	Buffer

– Buffer	updates	memory	in	parallel	to	processor

30

Write-Through	
Cache

• Write	both	values	in	
cache	and	in	memory

• Write	buffer	stops	CPU	
from	stalling	if	memory	
cannot	keep	up

• Write	buffer	may	have	
multiple	entries	to	
absorb	bursts	of	writes

• What	if	store	misses	in	
cache?

31

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041 Addr Data

Write	
Buffer

Handling	Stores	with	Write-Back

2)	Write-Back	Policy:	write	only	to	cache	and	
then	write	cache	block	back	to	memory	when	
evict	block	from	cache
–Writes	collected	in	cache,	only	single	write	to	
memory	per	block

– Include	bit	to	see	if	wrote	to	block	or	not,	and	
then	only	write	back	if	bit	is	set
• Called	“Dirty”	bit	(writing	makes	it	“dirty”)

32

Write-Back	
Cache

• Store/cache	hit,	write	data	in	
cache	only	&	set	dirty	bit
– Memory	has	stale	value

• Store/cache	miss,	read	data	
from	memory,	then	update	
and	set	dirty	bit
– “Write-allocate”	policy

• Load/cache	hit,	use	value	
from	cache

• On	any	miss,	write	back	
evicted	block,	only	if	dirty.	
Update	cache	with	new	block	
and	clear	dirty	bit.

33

Processor

32-bit
Address

32-bit
Data

Cache

32-bit
Address

32-bit
Data

Memory

1022 99
252

7
20

12

131
2041

D
D
D
D

Dirty	
Bits

Write-Through	vs.	Write-Back

• Write-Through:
– Simpler	control	logic
– More	predictable	timing	
simplifies	processor	control	
logic

– Easier	to	make	reliable,	since	
memory	always	has	copy	of	
data	(big	idea:	Redundancy!)

• Write-Back
– More	complex	control	logic
– More	variable	timing	(0,1,2	
memory	accesses	per	
cache	access)

– Usually	reduces	write	
traffic

– Harder	to	make	reliable,	
sometimes	cache	has	only	
copy	of	data

34

Cache	(Performance) Terms

• Hit	rate:	fraction	of	accesses	that	hit	in	the	cache
• Miss	rate:	1	– Hit	rate
• Miss	penalty:	time	to	replace	a	line/	block	from	
lower	level	in	memory	hierarchy	to	cache

• Hit	time:	time	to	access	cache	memory	(including	
tag	comparison)

• Abbreviation:	“$”	=	cache	(cash	…)

35

Average	Memory	Access	Time	(AMAT)
• Average	Memory	Access	Time	(AMAT)	is	the	
average	time	to	access	memory	considering	
both	hits	and	misses	in	the	cache

AMAT	=		 Time	for	a	hit		
+		Miss	rate	× Miss	penalty

36

B:		400	psec

C:		600	psec

A:		≤200	psec☐

☐

☐

☐

37

Question
AMAT	=		Time	for	a	hit		+		Miss	rate	x Miss	penalty

Given	a	200	psec clock,	a	miss	penalty	of	50	clock	
cycles,	a	miss	rate	of	0.02	misses	per	instruction	and	
a	cache	hit	time	of	1	clock	cycle,	what	is	AMAT?

Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String

0 4 0 4

0 4 0 4

• Consider	the	main	memory	address	(words)	reference	string	
of	word	numbers:																														0			4			0			4			0			4			0			4

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

38

0 4 0 4

0 4 0 4

miss miss miss miss

miss miss miss miss

00				Mem(0) 00				Mem(0)
01 4

01				Mem(4)
000

00				Mem(0)
01 4

00				Mem(0)
01 4

00				Mem(0)
01 4

01				Mem(4)
000

01				Mem(4)
000

• Ping-pong effect	due	to	conflict	misses	- two	memory	
locations	that	map	into	the	same	cache	block

• 8	requests,	8	misses

39

Example:	Direct-Mapped	Cache
with	4	Single-Word	Blocks,	Worst-Case	Reference	String
• Consider	the	main	memory	address	(words)	reference	string	

of	word	numbers:																														0			4			0			4			0			4			0			4
Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

01 4

Alternative	Block	Placement	Schemes

• DM	placement:	mem block	12	in	8	block	cache:	only	one	cache	
block	where	mem block	12	can	be	found—(12	modulo	8)	=	4

• SA	placement:	four	sets	x 2-ways	(8	cache	blocks),	memory	block	12	
in	set	(12	mod	4)	=	0;	either	element	of	the	set

• FA	placement:	mem block	12	can	appear	in	any	cache	blocks
40

Example:	2-Way	Set	Associative	$
(4	words	=	2	sets	x	2	ways	per	set)

0

Cache

Main	Memory

Q:	How	do	we	find	it?

Use	next	1	low	order	
memory	address	bit	to	
determine	which	cache	
set	(i.e.,	modulo	the	
number	of	sets	in	the	
cache)

Tag Data

Q:	Is	it	there?

Compare	all the	cache	
tags	in	the	set	to	the	high	
order	3	memory	address	
bits to	tell	if	the	memory	
block	is	in	the	cache

V

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx

Set

1

0
1

Way

0

1

One	word	blocks
Two	low	order	bits	
define	the	byte	in	the	
word	(32b	words)

41

0 4 0 4

42

Example:	4-Word	2-Way	SA	$
Same	Reference	String

• Consider	the	main	memory	address	(word)	reference	string
0			4			0			4			0			4			0			4Start	with	an	empty	cache	- all	blocks	

initially	marked	as	not	valid

Example:	4-Word	2-Way	SA	$
Same	Reference	String

0 4 0 4

• Consider	the	main	memory	address	(word)	reference	string
0			4			0			4			0			4			0			4

miss miss hit hit

000				Mem(0) 000				Mem(0)

Start	with	an	empty	cache	- all	blocks	
initially	marked	as	not	valid

010				Mem(4) 010				Mem(4)

000				Mem(0) 000				Mem(0)

010				Mem(4)

• Solves	the	ping-pong effect	in	a	direct-mapped	cache	due	to	
conflict	misses	since	now	two	memory	locations	that	map	into	
the	same	cache	set	can	co-exist!

• 8	requests,	2	misses

43

Four-Way	Set-Associative	Cache
• 28 =	256	sets	each	with	four	ways	(each	with	one	block)

31	30							.	.	.																13	12		11					.	.	.											2		1		0 Byte	offset

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

DataTagV
0
1
2
.
.
.

253
254
255

Set	Index

DataTagV
0
1
2
.
.
.

253
254
255

8
Index

22Tag

Hit Data

32

4x1	select

Way	0 Way	1 Way	2 Way	3

44

Different	Organizations	of	an	Eight-Block	Cache

Total	size	of	$	in	blocks	is	equal	to	
number	of	sets	× associativity.	For	
fixed	$	size	and	fixed	block	size,	
increasing associativity	decreases	
number	of	sets	while	increasing	
number	of	elements	per	set.	With	
eight	blocks,	an	8-way	set-
associative	$	is	same	as	a	fully	
associative	$.	

45

Range	of	Set-Associative	Caches
• For	a	fixed-size	cache	and	fixed	block	size,	each	
increase	by	a	factor	of	two	in	associativity	doubles	the	
number	of	blocks	per	set	(i.e.,	the	number	or	ways)	
and	halves	the	number	of	sets	– decreases	the	size	of	
the	index	by	1	bit	and	increases	the	size	of	the	tag	by	1	
bit

Word	offset Byte	offsetIndexTag

Decreasing	associativity

Fully	associative
(only	one	set)
Tag	is	all	the	bits	except
block	and	byte	offset

Direct	mapped
(only	one	way)
Smaller	tags,	only	a	
single	comparator

Increasing	associativity

Selects	the	setUsed	for	tag	compare Selects	the	word	in	the	block

46

Costs	of	Set-Associative	Caches
• N-way	set-associative	cache	costs
– N	comparators	(delay	and	area)
– MUX	delay	(set	selection)	before	data	is	available
– Data	available	after	set	selection	(and	Hit/Miss	decision).			
DM	$:	block	is	available	before	the	Hit/Miss	decision
• In	Set-Associative,	not	possible	to	just	assume	a	hit	and	continue	
and	recover	later	if	it	was	a	miss

• When	miss	occurs,	which	way’s	block	selected	for	
replacement?
– Least	Recently	Used	(LRU):	one	that	has	been	unused	the	
longest	(principle	of	temporal	locality)
• Must	track	when	each	way’s	block	was	used	relative	to	other	
blocks	in	the	set

• For	2-way	SA	$,	one	bit	per	set	→	set	to	1	when	a	block	is	
referenced;	reset	the	other	way’s	bit	(i.e.,	“last	used”)

47

Cache	Replacement	Policies
• Random	Replacement

– Hardware	randomly	selects	a	cache	evict
• Least-Recently	Used

– Hardware	keeps	track	of	access	history
– Replace	the	entry	that	has	not	been	used	for	the	longest	time
– For	2-way	set-associative	cache,	need	one	bit	for	LRU	replacement

• Example	of	a	Simple	“Pseudo”	LRU	Implementation
– Assume	64	Fully	Associative	entries
– Hardware	replacement	pointer	points	to	one	cache	entry
– Whenever	access	is	made	to	the	entry	the	pointer	points	to:

• Move	the	pointer	to	the	next	entry
– Otherwise:	do	not	move	the	pointer
– (example	of	“not-most-recently	used”	replacement	policy)

:

Entry	0
Entry	1

Entry		63

Replacement
Pointer

48

Benefits	of	Set-Associative	Caches
• Choice	of	DM	$	versus	SA	$	depends	on	the	cost	of	a	miss	

versus	the	cost	of	implementation

• Largest	gains	are	in	going	from	direct	mapped	to	2-way	
(20%+	reduction	in	miss	rate)

49

Understanding	Cache	Misses:
The	3Cs

• Compulsory	(cold	start	or	process	migration,	1st reference):
– First	access	to	block	impossible	to	avoid;	small	effect	for	long	

running	programs
– Solution:	increase	block	size	(increases	miss	penalty;	very	large	

blocks	could	increase	miss	rate)
• Capacity:

– Cache	cannot	contain	all	blocks	accessed	by	the	program
– Solution:	increase	cache	size	(may	increase	access	time)

• Conflict	(collision):
– Multiple	memory	locations	mapped	to	the	same	cache	location
– Solution	1:	increase	cache	size
– Solution	2:	increase	associativity (may	increase	access	time)

50

How	to	Calculate	3C’s	using	Cache	
Simulator

1. Compulsory:	set	cache	size	to	infinity	and	fully	
associative,	and	count	number	of	misses

2. Capacity:	Change	cache	size	from	infinity,	usually	
in	powers	of	2,	and	count	misses	for	each	
reduction	in	size
– 16	MB,	8	MB,	4	MB,	…	128	KB,	64	KB,	16	KB

3. Conflict:	Change	from	fully	associative	to	n-way	
set	associative	while	counting	misses
– Fully	associative,	16-way,	8-way,	4-way,	2-way,	1-way

51

3Cs	Analysis

• Three	sources	of	misses	(SPEC2000	integer	and	floating-point	
benchmarks)
– Compulsory	misses	0.006%;	not	visible
– Capacity	misses,	function	of	cache	size
– Conflict	portion	depends	on	associativity and	cache	size 52

Improving	Cache	Performance

• Reduce	the	time	to	hit	in	the	cache
– E.g.,	Smaller	cache

• Reduce	the	miss	rate
– E.g.,	Bigger	cache

• Reduce	the	miss	penalty
– E.g.,	Use	multiple	cache	levels

53

AMAT	=		Time	for	a	hit		+		Miss	rate	x	Miss	penalty

Impact	of	Larger	Cache	on	AMAT?
• 1)	Reduces	misses	(what	kind(s)?)
• 2)	Longer	Access	time	(Hit	time):	smaller	is	faster	
– Increase	in	hit	time	will	likely	add	another	stage	to	the	
pipeline	

• At	some	point,	increase	in	hit	time	for	a	larger	
cache	may	overcome	the	improvement	in	hit	rate,	
yielding	a	decrease	in	performance

• Computer	architects	expend	considerable	effort	
optimizing	organization	of	cache	hierarchy	– big	
impact	on	performance	and	power!

54

Questions:	Impact	of	longer	cache	
blocks	on	misses?

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	longer	blocks	on	each	type	of	
miss:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Compulsory?	
• Capacity?
• Conflict?

55

Questions:	Impact	of	longer	blocks	on	
AMAT

• For	fixed	total	cache	capacity	and	associativity,	
what	is	effect	of	longer	blocks	on	each	
component	of	AMAT:
– A:	Decrease,	B:	Unchanged,	C:	Increase

• Hit	Time?
• Miss	Rate?
• Miss	Penalty?

56

Question:
For	fixed	capacity	and	fixed	block	size,	how	
does	increasing	associativity	effect	AMAT?

57

Cache	Design	Space
• Several	interacting	dimensions

– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write	allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B

58

And	In	Conclusion,	…

59

• Principle	of	Locality	for	Libraries	/Computer	
Memory

• Hierarchy	of	Memories	(speed/size/cost	per	
bit)	to	Exploit	Locality

• Cache	– copy	of	data	lower	level	in	memory	
hierarchy

• Direct	Mapped	to	find	block	in	cache	using	Tag	
field	and	Valid	bit	for	Hit

• Cache	design	choice:
• Write-Through	vs.	Write-Back

