
CS	110
Computer	Architecture	
Review	Midterm	II

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Midterm	II

• Date:	Thursday,	May	17
• Time:	10:15	- 12:15	(similar	to	last	time)
• Venue:	Teaching	Center	301	+	302
• Closed	book:
– You	can	bring	two A4	pages	with	notes	((both	
sides;	English	preferred;	Chinese	is	OK):	Write	your	
Chinese	and	Pinyin name	on	the	top!

– This	time	HANDWRITTEN only!	
– You	will	be	provided	with	the	MIPS	”green	sheet”
– No	other	material	allowed!

2

Midterm	II
• Switch	cell	phones	off!	(not	silent	mode	– off!)
– Put	them	in	your	bags.	

• Bags	to	the	front.	Nothing	except	paper,	pen,	1	
drink,	1	snack	on	the	table!

• No	other	electronic	devices	are	allowed!
– No	ear	plugs,	music,	…

• Anybody	touching	any	electronic	device	will	FAIL	
the	course!

• Anybody	found	cheating	(copy	your	neighbors	
answers,	additional	material,	...)	will	FAIL	the	
course!

3

4

5

6

7

8

9

Do	not	look	inside	the	midterm	until	we	tell	
you	to	(until	the	time	starts)	!!	

10

Midterm	II

• Ask	questions	today!

• This	review	session	does	not/	can	not	cover	all	
possible	topics!

• Topics:	SDS	till	Data-Level-Parallelism

11

Synchronous	Digital	Systems

12

Synchronous:
• All	operations	coordinated	by	a	central	clock

§ “Heartbeat”	of	the	system!

Digital:
• Represent	all	values by	discrete	values
• Two	binary	digits:	1	and	0
• Electrical	signals	are	treated	as	1’s	and	0’s

• 1	and	0	are	complements	of	each	other
• High /low voltage	for	true /	false,	1 /	0

Hardware	of	a	processor,	such	as	the	MIPS,	is	an	example	of	
a	Synchronous	Digital	System

• Common	combinational	logic	
systems	have	standard	symbols	
called	logic	gates

– Buffer,	NOT

– AND,	NAND

– OR,	NOR

Combinational	Logic	Symbols

Z

A
B Z

Z

A

A
B

Inverting	versions	(NOT,	NAND,	NOR)	easiest	

to	implement with	CMOS	transistors (the	

switches	we	have	available	and	use	most)

13

1V

X Y

0V

1V

X
Y

0V

Boolean	Algebra

• Use	plus	“+”	for	OR
– “logical	sum”	 1+0	=	0+1	=	1	(True);	1+1=2	(True);	0+0	=	0	(False)

• Use	product	for	AND	(a�b or	implied	via	ab)
– “logical	product”									0*0	=	0*1	=	1*0	=	0	(False);	1*1	=	1	(True)

• “Hat”	to	mean	complement	(NOT)	
• Thus
ab +	a	+	c

=	 a�b +	a	+	c
=	 (a	AND	b)	OR	a	OR	(NOT	c)

14

Truth	Tables
for	Combinational	Logic

15

F Y

A
B

C
D

0

Exhaustive	list	of	the	output	value	
generated	for	each	combination	of	inputs

How	many	logic	functions	can	be	defined	
with	N	inputs?	

Boolean	Algebra:	Circuit	&	Algebraic	
Simplification

16

Representations	of	Combinational	
Logic	(groups	of	logic	gates)

Truth	Table

Gate	DiagramBoolean	Expression

Sum	of	
Products,
Product	of	Sums	
Methods

Enumerate	
Inputs

Enumerate	
Inputs

Use	Equivalency	between	
boolean	operators	and	

gates

Question

• Simplify	Z	=	A+BC	+	A(BC)

• A:	 Z	=	0
• B:	 Z	=	A(1+	BC)
• C:			Z	=	(A	+	BC)
• D:		Z	=	BC
• E:			Z	=	1

18

Signals	and	Waveforms
an-1 an-1 a0

Noisy!
Delay!

Type	of	Circuits
• Synchronous	Digital	Systems	consist	of	two	
basic	types	of	circuits:
• Combinational	Logic	(CL)	circuits

–Output	is	a	function	of	the	inputs	only,	not	the	history	
of	its	execution
– E.g.,	circuits	to	add	A,	B	(ALUs)

• Sequential	Logic	(SL)
• Circuits	that	“remember”	or	store	information
• aka	“State	Elements”
• E.g.,	memories	and	registers	(Registers)

20

Uses	for	State	Elements

• Place	to	store	values	for	later	re-use:
– Register	files	(like	$1-$31	in	MIPS)
–Memory	(caches	and	main	memory)

• Help	control	flow	of	information	between	
combinational	logic	blocks
– State	elements	hold	up	the	movement	of	
information	at	input	to	combinational	logic	blocks	
to	allow	for	orderly	passage

21

Recap	of	Timing	Terms
• Clock	(CLK)	- steady	square	wave	that	synchronizes	system
• Setup	Time - when	the	input	must	be	stable	before the	

rising	edge	of	the	CLK
• Hold	Time - when	the	input	must	be	stable	after the	rising	

edge	of	the	CLK
• “CLK-to-Q” Delay	- how	long	it	takes	the	output	to	change,	

measured	from	the	rising	edge	of	the	CLK

• Flip-flop - one	bit	of	state	that	samples	every	rising	edge	of	
the	CLK	(positive	edge-triggered)

• Register - several	bits	of	state	that	samples	on	rising	edge	
of	CLK	or	on	LOAD	(positive	edge-triggered)

Maximum	Clock	Frequency

• What	is	the	maximum	frequency	of	this	circuit?

23

Max	Delay	=	 Setup	Time	+	CLK-to-Q	Delay	+	CL	Delay

Hint:
Frequency	=	1/Period

FSM	Example:	3	ones…

Draw	the	FSM…

FSM	to	detect	the	occurrence	of	3	consecutive	1’s	in	the	input.

Assume	state	transitions	are	controlled	by	the	clock:
on	each	clock	cycle	the	machine	checks	the	inputs	and	
moves	to	a	new	state	and	produces	a	new	output…

Input/output

Datapath:	Five	Stages	of	Instruction	
Execution

• Stage	1:	Instruction	Fetch

• Stage	2:	Instruction	Decode

• Stage	3:	ALU	(Arithmetic-Logic	Unit)

• Stage	4:	Memory	Access

• Stage	5:	Register	Write

25

Stages	of	Execution	on	Datapath

in
st
ru
ct
io
n

m
em
or
y

+4

rt
rs
rd

re
gi
st
er
s

ALU

D
at
a

m
em
or
y

imm

1.	Instruction
Fetch

2.	Decode/
Register
Read

3.	Execute 4.	Memory 5.	Register
Write

PC

26

Datapath Control	Signals
• ExtOp: “zero”,	“sign”
• ALUsrc: 0	=> regB;	

1 => immed
• ALUctr: “ADD”,	“SUB”,	“OR”
• nPC_sel: 1	=>	branch

• MemWr: 1 => write	memory
• MemtoReg:			0 => ALU;	1 => Mem
• RegDst: 0 => “rt”;	1 => “rd”
• RegWr: 1 => write	register

32

ALUctr

clk

busW

RegWr

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

RdRegDst

Extender 3216
imm16

ALUSrcExtOp

MemtoReg

clk

Data	In
32

MemWr01

0

1

ALU 0

1
WrEn Adr

Data
Memory

5

imm16

clk

PC

00

4
nPC_sel &	Equal

PC	Ext

Adder
Adder

M
ux

Inst	Address

0

1

27

RTL:	The	Add Instruction

add rd, rs, rt
–MEM[PC] Fetch	the	instruction	from	memory
– R[rd]	=	R[rs]	+	R[rt] The	actual	operation
– PC	=	PC	+	4 Calculate	the	next	 instruction’s		address

op rs rt rd shamt funct
061116212631

6	bits 6	bits5	bits5	bits5	bits5	bits

28

Instruction	Fetch	Unit	at	the	Beginning	of	Add
• Fetch	the	instruction	from	Instruction	memory:	
Instruction		=		MEM[PC]
– same	for	
all	instructions

imm16

clk

PC

00

4 nPC_sel

PC	Ext

Adder
Adder

M
ux

Inst Address

Inst
Memory Instruction<31:0>

29

Single	Cycle	Datapath during	Add

R[rd]		=		R[rs]		+		R[rt]
op rs rt rd shamt funct

061116212631

32

ALUctr=ADD

clk

busW

RegWr=1

32

32busA

32

busB

5 5

Rw Ra Rb

RegFile

Rs

Rt

Rt

Rd
RegDst=1

Extender 3216
imm16

ALUSrc=0ExtOp=x

MemtoReg=0

clk

Data	In
32

MemWr=0

zero
01

0

1

=

ALU 0

1
WrEn Adr

Data
Memory

5

Instruction<31:0><21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

nPC_sel=+4 instr
fetch
unitclk

30

Summary	of	the	Control	Signals	(1/2)
inst Register Transfer

add R[rd] ← R[rs] + R[rt]; PC ← PC + 4

ALUsrc=RegB, ALUctr=“ADD”, RegDst=rd, RegWr, nPC_sel=“+4”

sub R[rd] ← R[rs] – R[rt]; PC ← PC + 4

ALUsrc=RegB, ALUctr=“SUB”, RegDst=rd, RegWr, nPC_sel=“+4”

ori R[rt] ← R[rs] + zero_ext(Imm16); PC ← PC + 4

ALUsrc=Im, Extop=“Z”, ALUctr=“OR”, RegDst=rt,RegWr, nPC_sel=“+4”

lw R[rt] ← MEM[R[rs] + sign_ext(Imm16)]; PC ← PC + 4

ALUsrc=Im, Extop=“sn”, ALUctr=“ADD”, MemtoReg, RegDst=rt, RegWr,
nPC_sel = “+4”

sw MEM[R[rs] + sign_ext(Imm16)] ← R[rs]; PC ← PC + 4

ALUsrc=Im, Extop=“sn”, ALUctr = “ADD”, MemWr, nPC_sel = “+4”

beq if (R[rs] == R[rt]) then PC ← PC + sign_ext(Imm16)] || 00
else PC ← PC + 4

nPC_sel = “br”, ALUctr = “SUB”

31

Summary	of	the	Control	Signals	(2/2)

add sub ori lw sw beq jump
RegDst
ALUSrc
MemtoReg
RegWrite
MemWrite
nPCsel
Jump
ExtOp
ALUctr<2:0>

1
0
0
1
0
0
0
x
Add

1
0
0
1
0
0
0
x

Subtract

0
1
0
1
0
0
0
0
Or

0
1
1
1
0
0
0
1
Add

x
1
x
0
1
0
0
1
Add

x
0
x
0
0
1
0
x

Subtract

x
x
x
0
0
x
1
x
x

op target	address

op rs rt rd shamt funct
061116212631

op rs rt immediate

R-type

I-type

J-type

add,	sub

ori,	lw,	sw,	beq

jump

func
op 00	0000 00	0000 00	1101 10	0011 10	1011 00	0100 00	0010Appendix	A

10	0000See 10	0010 We	Don’t	Care	:-)

32

PC

in
st
ru
ct
io
n

m
em

or
y

+4

rt
rs
rd

re
gi
st
er
s

ALU

Da
ta

m
em

or
y

imm

1.	Instruction
Fetch

2.	Decode/
Register	Read

3.	Execute 4.	Memory 5.	Write
Back

Pipelining:	Single	Cycle	Datapath

33

PC

in
st
ru
ct
io
n

m
em

or
y

+4

rt
rs
rd

re
gi
st
er
s

ALU

Da
ta

m
em

or
y

imm

1.	Instruction
Fetch

2.	Decode/
Register	Read

3.	Execute 4.	Memory 5.	Write
Back

Pipeline	registers

• Need	registers	between	stages
– To	hold	information	produced	in	previous	cycle

34

I
n
s
t
r

O
r
d
e
r

Load

Add

Store

Sub

Or

I$

Time (clock cycles)

I$

A
LU

Reg

Reg

I$

D$

A
LU

A
LU

Reg

D$

Reg

I$

D$

Reg

A
LU

Reg Reg

Reg

D$

Reg

D$

A
LU

• RegFile:	left	half	is	write,	right	half	is	read

Reg

I$

Graphical	Pipeline	Representation

35

Pipelining	Performance	(3/3)

Single-cycle
Tc =	800	ps
f	=	1.25GHz

Pipelined
Tc =	200	ps
f	=	5GHz

36

Pipelining	Hazards

A	hazard is	a	situation	that	prevents	starting	the	
next	instruction	in	the	next clock	cycle

1) Structural	hazard
– A	required	resource	is	busy
(e.g.	needed	in	multiple	stages)

2) Data	hazard
– Data	dependency	between	instructions
– Need	to	wait	for	previous	instruction	to	complete	

its	data	read/write
3) Control	hazard
– Flow	of	execution	depends	on	previous	instruction

37

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUReg D$ Reg

A
LUI$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Structural	Hazard	#1:	Single	Memory

Trying	to	read	
same	memory	
twice	in	same	
clock	cycle

38

Structural	Hazard	#2:	Registers	(1/2)

I$

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

A
LUReg D$ Reg

A
LUI$ Reg D$ Reg

I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

Can	we	read	and	
write	to	registers	
simultaneously?

39

2.	Data	Hazards	(2/2)
• Data-flow	backwards in	time	are	hazards

sub $t4,$t0,$t3
A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg
I
n
s
t
r

O
r
d
e
r

Time (clock cycles)

40

Data	Hazard	Solution:	Forwarding
• Forward	result	as	soon	as	it	is	available
– OK	that	it’s	not	stored	in	RegFile yet

sub $t4,$t0,$t3
A
LUI$ Reg D$ Reg

and $t5,$t0,$t6

A
LUI$ Reg D$ Reg

or $t7,$t0,$t8 I$

A
LUReg D$ Reg

xor $t9,$t0,$t10

A
LUI$ Reg D$ Reg

add $t0,$t1,$t2
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

41

Data	Hazard:	Loads	(1/4)

• Recall: Dataflow	backwards	in	time	are	
hazards

• Can’t	solve	all	cases	with	forwarding
– Must	stall instruction	dependent	on	load,	then	
forward	(more	hardware)

sub $t3,$t0,$t2

A
LUI$ Reg D$ Reg

lw $t0,0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

42

Data	Hazard:	Loads	(2/4)

• Hardware stalls	pipeline
– Called	“hardware	interlock”

sub $t3,$t0,$t2

A
LUI$ Reg D$ Regbub

ble

and $t5,$t0,$t4

A
LUI$ Reg D$ Regbub

ble

or $t7,$t0,$t6 I$

A
LUReg D$bub

ble

lw $t0, 0($t1)
IF ID/RF EX MEM WBA

LUI$ Reg D$ Reg

Schematically,	this	is	what	we	
want,	but	in	reality	stalls	done	
“horizontally”

How	to	stall	
just	part	of	
pipeline?

43

Data	Hazard:	Loads	(3/4)
• Stalled	instruction	converted	to	“bubble”,	acts	like	nop

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
LUReg D$

lw $t0, 0($t1) A
LUI$ Reg D$ Reg

bub
ble

bub
ble

bub
ble

A
LUI$ Reg D$ Reg

A
LUI$ Reg D$ Reg

sub $t3,$t0,$t2

44

I$ Reg

First	two	pipe	
stages	stall	by	
repeating	stage	
one	cycle	later

3.	Control	Hazards

• Branch	determines	flow	of	control
– Fetching	next	instruction	depends	on	branch	
outcome

– Pipeline	can’t	always	fetch	correct	instruction
• Still	working	on	ID	stage	of	branch

• BEQ,	BNE	in	MIPS	pipeline	
• Simple	solution	Option	1:	Stall	on	every	
branch	until	branch	condition	resolved	
–Would	add	2	bubbles/clock	cycles	for	every	
Branch!	(~	20%	of	instructions	executed)

Caches

46

Big	Idea:	Memory	Hierarchy
Processor

Size	of	memory	at	each	level

Increasing
distance	from
processor,
decreasing		
speed

Level	1

Level	2

Level	n

Level	3

.	.	.

Inner

Outer

Levels	in	
memory	
hierarchy

As	we	move	to outer	levels	the	latency	goes	up
and	price	per	bit	goes	down.	Why?

47

Processor

Control

Datapath

Adding	Cache	to	Computer

48

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Cache

Total	Cash	Capacity	=

49

Associativity	*		#	of	sets		*		block_size
Bytes	=	blocks/set		*		sets		*		Bytes/block	

Byte	OffsetTag Index

C	=	N	*		S		*		B

address_size =	tag_size +	index_size +	offset_size
=	tag_size +	log2(S)	+	log2(B)

Clicker	Question:		C	remains	constant,	S	and/or	B	can	change	such	that	
C	=	2N	*	(SB)’	=>	(SB)’	=	SB/2

Tag_size =	address_size – (log2(S)	+	log2(B))	=	address_size – log2(SB)
=	address_size – (log2(SB)	– 1)

50

• Principle	of	Locality	for	Libraries	/Computer	
Memory

• Hierarchy	of	Memories	(speed/size/cost	per	
bit)	to	Exploit	Locality

• Cache	– copy	of	data	lower	level	in	memory	
hierarchy

• Direct	Mapped	to	find	block	in	cache	using	Tag	
field	and	Valid	bit	for	Hit

• Cache	design	choice:
• Write-Through	vs.	Write-Back

Cache	Organizations
• “Fully	Associative”:	Block	can	go	anywhere
– First	design	in	lecture
– Note:	No	Index	field,	but	1	comparator/block

• “Direct	Mapped”:	Block	goes	one	place	
– Note:	Only	1	comparator
– Number	of	sets	=	number	blocks

• “N-way	Set	Associative”:	N	places	for	a	block
– Number	of	sets	=	number	of	blocks	/	N
– N	comparators
– Fully	Associative:	N	=	number	of	blocks
– Direct	Mapped:	N	=	1

51

Processor	Address	Fields	used	by	
Cache	Controller

• Block	Offset:	Byte	address	within	block
• Set	Index:	Selects	which	set
• Tag:	Remaining	portion	of	processor	address

• Size	of	Index	=	log2	(number	of	sets)
• Size	of	Tag	=	Address	size	– Size	of	Index	
– log2	(number	of	bytes/block)

Block offsetSet	IndexTag

52

Processor	Address	(32-bits	total)

Write	Policy	Choices	
• Cache	hit:

– write	through:	writes	both	cache	&	memory	on	every	access
• Generally	higher	memory	traffic	but	simpler	pipeline	&	cache	design

– write	back:	writes	cache	only,	memory	`written	only	when	dirty	
entry	evicted
• A	dirty	bit	per	line	reduces	write-back	traffic
• Must	handle	0,	1,	or	2	accesses	to	memory	for	each	load/store

• Cache	miss:
– no	write	allocate:		only	write	to	main	memory
– write	allocate	(aka	fetch	on	write):		fetch	into	cache

• Common	combinations:
– write	through	and	no	write	allocate
– write	back	with	write	allocate

53

• One	word	blocks,	cache	size	=	1K	words	(or	4KB)

Direct-Mapped	Cache	Review

20Tag 10
Index

DataIndex TagValid
0
1
2
.
.
.

1021
1022
1023

31	30							.	.	.							 13	12		11					.	.	.							 2		1		0
Byte	offset

20

Data

32

Hit

54

Valid	bit	
ensures	

something	
useful	in	
cache	for	
this	index

Compare	
Tag	with	

upper	part	of	
Address	to	
see	if	a	Hit

Read
data	
from	
cache	
instead	

of	
memory	
if	a	Hit

Comparator

Sources	of	Cache	Misses	(3	C’s)
• Compulsory	(cold	start,	first	reference):
– 1st access	to	a	block,	“cold”	fact	of	life,	not	a	lot	you	can	
do	about	it.		
• If	running	billions	of	instructions,	compulsory	misses	are	
insignificant

• Capacity:
– Cache	cannot	contain	all	blocks	accessed	by	the	program

• Misses	that	would	not	occur	with	infinite	cache
• Conflict	(collision):
– Multiple	memory	locations	mapped	to	same	cache	set

• Misses	that	would	not	occur	with	ideal	fully	associative	cache

55

Impact	of	Cache	Parameters	on	
Performance

• AMAT	=	Hit	Time	+	Miss	Rate	*	Miss	Penalty
– Note,	we	assume	always	first	search	cache,	so	
must	charge	hit	time	for	both	hits	and	misses!

• For	misses,	characterize	by	3Cs

56

Local	vs.	Global	Miss	Rates
• Local	miss	rate	– the	fraction	of	references	to	one	
level	of	a	cache	that	miss

• Local	Miss	rate	L2$	=	$L2	Misses	/	L1$	Misses
• Global	miss	rate	– the	fraction	of	references	that	
miss	in	all	levels	of	a	multilevel	cache
• L2$	local	miss	rate	>>	than	the	global	miss	rate

• Global	Miss	rate	=	L2$	Misses	/	Total	Accesses
=	(L2$	Misses	/	L1$	Misses)	× (L1$	Misses	/	Total	Accesses)
=	Local	Miss	rate	L2$	× Local	Miss	rate	L1$

• AMAT	=		Time	for	a	hit		+		Miss	rate	× Miss	penalty
• AMAT	=		Time	for	a	L1$	hit		+	(local)	Miss	rate	L1$	×

(Time	for	a	L2$	hit	+	(local)	Miss	rate	L2$	× L2$	Miss	penalty)
57

In	Conclusion,	Cache	Design	Space
• Several	interacting	dimensions

– Cache	size
– Block	size
– Associativity
– Replacement	policy
– Write-through	vs.	write-back
– Write-allocation

• Optimal	choice	is	a	compromise
– Depends	on	access	characteristics

• Workload
• Use	(I-cache,	D-cache)

– Depends	on	technology	/	cost
• Simplicity	often	wins

Associativity

Cache	Size

Block	Size

Bad

Good

Less More

Factor	A Factor	B

58

Iron	Law	of	Performance

• A program	executes	instructions
• CPU Time/Program

= Clock Cycles/Program x Clock Cycle Time
= Instructions/Program

x Average Clock Cycles/Instruction
x Clock Cycle Time

• 1st term	called	Instruction	Count
• 2nd term	abbreviated	CPI	for	average	
Clock	Cycles	Per	Instruction	

• 3rd	term	is	1	/	Clock	rate

59

IEEE	754	Floating-Point	Standard	(1/3)

Single	Precision	(Double	Precision	similar):

• Sign bit: 1	means	negative 0	means	positive

• Significand in	sign-magnitude	format	(not	2’s	complement)
– To	pack	more	bits,	leading	1	implicit	for	normalized	numbers
– 1	+	23	bits	single,	1	+	52	bits	double
– always	true:	0	<	Significand	<	1																													(for	normalized	numbers)

• Note:	0	has	no	leading	1,	so	reserve	exponent	value	0	just	for	
number	0

031
S Exponent
30 23 22

Significand
1 bit 8 bits 23 bits

IEEE	754	Floating	Point	Standard	(2/3)

• IEEE	754	uses	“biased	exponent”
representation
– Designers	wanted	FP	numbers	to	be	used	even	if	no	
FP	hardware;	e.g.,	sort	records	with	FP	numbers	
using	integer	compares

–Wanted	bigger	(integer)	exponent	field	to	represent	
bigger	numbers

– 2’s	complement	poses	a	problem	(because	negative	
numbers	look	bigger)
• Use	just	magnitude	and	offset	by	half	the	range

IEEE	754	Floating	Point	Standard	(3/3)

• Summary	(single	precision):

•Called Biased Notation, where bias is
number subtracted to get final number
• IEEE 754 uses bias of 127 for single prec.
• Subtract 127 from Exponent field to get actual
value for exponent

031
S Exponent

30 23 22
Significand

1 bit 8 bits 23 bits
• (-1)S x (1 + Significand) x 2(Exponent-127)

• Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Flynn*	Taxonomy,	1966

• Since	about	2013,	SIMD	and	MIMD	most	common	parallelism	
in	architectures	– usually	both	in	same	system!

• Most	common	parallel	processing	programming	style:	Single	
Program	Multiple	Data	(“SPMD”)
– Single	program	that	runs	on	all	processors	of	a	MIMD
– Cross-processor	execution	coordination	using	synchronization	

primitives
• SIMD	(aka	hw-level	data	parallelism):	specialized	function	

units,	for	handling	lock-step	calculations	involving	arrays
– Scientific	computing,	signal	processing,	multimedia	

(audio/video	processing)

63

*Prof.	Michael	
Flynn,	Stanford

Big	Idea:	Amdahl’s	Law

64

Speedup		=																							1
(1	- F)			+			F

SNon-speed-up	part Speed-up	part

1
0.5	+	0.5

2

1
0.5	+	0.25

= = 1.33

Example:	the	execution	time	of	half	of	the	program	can	
be	accelerated	by	a	factor	of	2.
What	is	the	program	speed-up	overall?

Strong	and	Weak	Scaling
• To	get	good	speedup	on	a	parallel	processor	while	
keeping	the	problem	size	fixed	is	harder	than	getting	
good	speedup	by	increasing	the	size	of	the	problem.
– Strong	scaling:	when	speedup	can	be	achieved	on	a	
parallel	processor	without	increasing	the	size	of	the	
problem

– Weak	scaling:	when	speedup	is	achieved	on	a	parallel	
processor	by	increasing	the	size	of	the	problem	
proportionally	to	the	increase	in	the	number	of	processors

• Load	balancing	is	another	important	factor:	every	
processor	doing	same	amount	of	work		
– Just	one	unit	with	twice	the	load	of	others	cuts	speedup	
almost	in	half

65

Data	Level	Parallelism

• Loop	Unrolling
• Intel	SSE	SIMD	Instructions
– Exploit	data-level	parallelism	in	loops
– One	instruction	fetch	that	operates	on	multiple	
operands	simultaneously

– 128-bit	XMM	registers
• SSE	Instructions	in	C	using	Intrinsics
– Embed	the	SSE	machine	instructions	directly	into	C	
programs	through	use	of	intrinsics

– Achieve	efficiency	beyond	that	of	optimizing	compiler

66

CS	110
Computer	Architecture	

Thread-Level	Parallelism	(TLP)	
and	OpenMP Intro

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

67
Slides based on UC Berkley's CS61C

Review
• Sequential	software	is	slow	software
– SIMD	and	MIMD	are	paths	to	higher	performance

• MIMD	thru:	multithreading	processor	cores	
(increases	utilization),	Multicore	processors	
(more	cores	per	chip)

• Synchronization	– coordination	among	threads
– MIPS:	atomic	read-modify-write	using	load-
linked/store-conditional

• OpenMP as	simple	parallel	extension	to	C
– Pragmas	for	forking	multiple	Threads
– ≈	C:	small	so	easy	to	learn,	but	not	very	high	level	and	
it’s	easy	to	get	into	trouble

68

OpenMP Programming	Model	- Review

• Fork	- Join	Model:

• OpenMP programs	begin	as	single	process	(master	thread)	
and	executes	sequentially	until	the	first	parallel	region	
construct	is	encountered
– FORK:		Master	thread	then	creates	a	team	of	parallel	threads
– Statements	in	program	that	are	enclosed	by	the	parallel	region	

construct	are	executed	in	parallel	among	the	various	threads
– JOIN: When	the	team	threads	complete	the	statements	in	the	

parallel	region	construct,	they	synchronize	and	terminate,	
leaving	only	the	master	thread

69

parallel Pragma	and	Scope	-
Review

• Basic	OpenMP construct	for	parallelization:
#pragma omp parallel
{

/* code goes here */
}
– Each thread	runs	a	copy	of	code	within	the	block
– Thread	scheduling	is	non-deterministic

• OpenMP default	is	shared variables
– To	make	private,	need	to	declare	with	pragma:
#pragma omp parallel private (x)

70

OpenMP Directives	(Work-Sharing)

71

Shares	iterations	of	a	
loop	across	the	threads

Each	section	is	executed
by	a	separate	thread

Serializes	the	execution
of	a	thread

• These	are	defined	within a	parallel section

Parallel Statement	Shorthand

#pragma omp parallel

{

#pragma omp for

for(i=0; i<len; i++) { … }

}

can	be	shortened	to:
#pragma omp parallel for

for(i=0; i<len; i++) { … }

• Also	works	for	sections
72

This	is	the	only	
directive	in	the	
parallel	section

Building	Block:	for loop

for (i=0; i<max; i++) zero[i] = 0;

• Breaks	for	loop	into	chunks,	and	allocate	each	to	a	
separate	thread
– e.g.	if	max =	100	with	2	threads:

assign	0-49	to	thread	0,	and	50-99	to	thread	1
• Must	have	relatively	simple	“shape”	for	an	OpenMP-
aware	compiler	to	be	able	to	parallelize	it
– Necessary	for	the	run-time	system	to	be	able	to	determine	
how	many	of	the	loop	iterations	to	assign	to	each	thread

• No	premature	exits	from	the	loop	allowed
– i.e.	No	break,	return,	exit,	goto statements

73

In	general,	
don’t	jump	
outside	of	any	
pragma block

Parallel	for pragma
#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = 0;

• Master	thread	creates	additional	threads,	
each	with	a	separate	execution	context

• All	variables	declared	outside	for	loop	are	
shared	by	default,	except	for	loop	index	
which	is	private	per	thread	(Why?)

• Implicit	“barrier”	synchronization	at	end	of	
for	loop

• Divide	index	regions	sequentially	per	thread
– Thread	0	gets	0,	1,	…,	(max/n)-1;	
– Thread	1	gets	max/n,	max/n+1,	…,	2*(max/n)-1
– Why? 74

OpenMP	Timing

• Elapsed	wall	clock	time:
double omp_get_wtime(void);
– Returns	elapsed	wall	clock	time	in	seconds
– Time	is	measured	per	thread,	no	guarantee	can	be	
made	that	two	distinct	threads	measure	the	same	
time

– Time	is	measured	from	“some	time	in	the	past,”	so	
subtract	results	of	two	calls	to	omp_get_wtime
to	get	elapsed	time

75

Matrix	Multiply	in	OpenMP
// C[M][N] = A[M][P] × B[P][N]
start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, j, k)

for (i=0; i<M; i++){
for (j=0; j<N; j++){
tmp = 0.0;
for(k=0; k<P; k++){
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += A[i][k] * B[k][j];

}
C[i][j] = tmp;

}
}

run_time = omp_get_wtime() - start_time;

Outer	loop	spread	across	N	
threads;	
inner	loops	inside	a	single	
thread

Notes	on	Matrix	Multiply	Example

• More	performance	optimizations	available:
– Higher	compiler	optimization (-O2,	-O3)	to	reduce	
number	of	instructions	executed

– Cache	blocking to	improve	memory	performance
– Using	SIMD	SSE	instructions	to	raise	floating	point	
computation	rate	(DLP)

77

Simple	Multi-core	Processor

78

Processor	0

Control

Datapath
PC

Registers
(ALU)

Memory
Input

Output

Bytes

I/O-Memory	Interfaces

Processor	0	
Memory	
Accesses

Processor	1

Control

Datapath
PC

Registers
(ALU)

Processor	1	
Memory	
Accesses

Multiprocessor	Caches
• Memory	is	a	performance	bottleneck	even	with	one	processor
• Use	caches	to	reduce	bandwidth	demands	on	main	memory
• Each	core	has	a	local	private	cache	holding	data	it	has	accessed	

recently
• Only	cache	misses	have	to	access	the	shared	common	memory

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

79

Shared	Memory	and	Caches
• What	if?	
– Processors	1	and	2	read	Memory[1000]	(value		20)

80

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

1000

20

1000	

1000 1000

20

0 1 2

Shared	Memory	and	Caches
• Now:
– Processor	0	writes	Memory[1000]	with	40

81

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

0 1 2

1000	20 1000	20

1000

1000	40

1000	40

Problem?

Keeping	Multiple	Caches	Coherent
• Architect’s	job:	shared	memory	
=>	keep	cache	values	coherent

• Idea:	When	any	processor	has	cache	miss	or	
writes,	notify	other	processors	via	interconnection	
network
– If	only	reading,	many	processors	can	have	copies
– If	a	processor	writes,	invalidate	any	other	copies

• Write	transactions	from	one	processor,	other	
caches		“snoop”	the	common	interconnect	
checking	for	tags	they	hold
– Invalidate	any	copies	of	same	address	modified	in	other	
cache

82

Shared	Memory	and	Caches
• Example,	now	with	cache	coherence
– Processors	1	and	2	read	Memory[1000]
– Processor	0	writes	Memory[1000]	with	40

83

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

0 1 2

1000	20 1000	20

Processor	0
Write
Invalidates
Other	Copies

1000

1000	40

1000	40

Question:
Which	statement(s)	are	true?

• A:	Using	write-through	caches	removes	the	
need	for	cache	coherence

• B:	Every	processor	store	instruction	must	
check	contents	of	other	caches

• C:	Most	processor	load	and	store	accesses	
only	need	to	check	in	local	private	cache

• D:	Only	one	processor	can	cache	any	memory	
location	at	one	time

84

Cache	Coherency	Tracked	by	Block

• Suppose	block	size	is	32	bytes
• Suppose	Processor	0	reading	and	writing	variable	X,	Processor	

1	reading	and	writing	variable	Y
• Suppose	in	X	location	4000,		Y	in	4012
• What	will	happen?

85

Processor	0 Processor	1

4000 4000 4004 4008 4012 4016 4028
Tag 32-Byte	Data	Block

Cache	0 Cache	1

Memory

Coherency	Tracked	by	Cache	Block

• Block	ping-pongs	between	two	caches	even	
though	processors	are	accessing	disjoint	
variables

• Effect	called	false	sharing	
• How	can	you	prevent	it?

86

Shared	Memory	and	Caches
• Use	valid	bit	to	”unload”	cache	lines	(in	
Processors	1	and	2)

• Dirty	bit	tells	me:	”I	am	the	only	one	using	this	
cache	line”!	=>	no	need	to	announce	on	
Network!

87

Processor Processor Processor

Cache Cache Cache

Interconnection	Network

Memory I/O

1000

20

1000	

1000 1000

20

0 1 2

Review:	Understanding	Cache	Misses:
The	3Cs

• Compulsory	(cold	start	or	process	migration,	1st reference):
– First	access	to	block,	impossible	to	avoid;	small	effect	for	long-running	

programs
– Solution:	increase	block	size	(increases	miss	penalty;	very	large	blocks	

could	increase	miss	rate)
• Capacity (not	compulsory	and…)

– Cache	cannot	contain	all	blocks	accessed	by	the	program	even	with	
perfect	replacement	policy	in	fully	associative	cache

– Solution:	increase	cache	size	(may	increase	access	time)
• Conflict	(not	compulsory	or	capacity	and…):

– Multiple	memory	locations	map	to	the	same	cache	location
– Solution	1:	increase	cache	size
– Solution	2:	increase	associativity	(may	increase	access	time)
– Solution	3:	improve	replacement	policy,	e.g..	LRU

88

Fourth	“C”	of	Cache	Misses:
Coherence	Misses

• Misses	caused	by	coherence	traffic	with	other	
processor

• Also	known	as	communication	misses	because	
represents	data	moving	between	processors	
working	together	on	a	parallel	program

• For	some	parallel	programs,	coherence	misses	
can	dominate	total	misses

89

Example:	Calculating	π

90

Sequential	Calculation	of	π in	C	
#include <stdio.h> /* Serial Code */
static long num_steps = 100000;
double step;
void main () {

int i;
double x, pi, sum = 0.0;
step = 1.0/(double)num_steps;
for (i = 1; i <= num_steps; i++) {

x = (i - 0.5) * step;
sum = sum + 4.0 / (1.0 + x*x);

}
pi = sum * step;
printf ("pi = %6.12f\n", pi);

} 91

Parallel	OpenMP Version	(1)
#include <omp.h>
#define NUM_THREADS 4
static long num_steps = 100000; double step;

void main () {
int i; double x, pi, sum[NUM_THREADS];
step = 1.0/(double) num_steps;
#pragma omp parallel private (i, x)
{
int id = omp_get_thread_num();
for (i=id, sum[id]=0.0; i< num_steps; i=i+NUM_THREADS)
{
x = (i+0.5)*step;
sum[id] += 4.0/(1.0+x*x);

}
}
for(i=1; i<NUM_THREADS; i++) sum[0] += sum[i];
pi = sum[0] * step;
printf ("pi = %6.12f\n", pi);

} 92

OpenMP	Reduction
double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX; // bug

• Problem	is	that	we	really	want	sum	over	all	threads!
• Reduction:	specifies	that	1	or	more	variables	that	are	private	

to	each	thread	are	subject	of	reduction	operation	at	end	of	
parallel	region:
reduction(operation:var)	where
– Operation:	operator	to	perform	on	the	variables	(var)	at	the	end	of	the	parallel	

region	:					+,	*,	-,	&,	^,	|,	&&,	or	||.
– Var:	One	or	more	variables	on	which	to	perform	scalar	reduction.	

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX;

93

Version	2:	parallel	for,	reduction
#include <omp.h>
#include <stdio.h>
/static long num_steps = 100000;
double step;
void main (){

int i; double x, pi, sum = 0.0;
step = 1.0 / (double)num_steps;

#pragma omp parallel for private(x) reduction(+:sum)
for (i=1; i<= num_steps; i++){

x = (i - 0.5) * step;
sum = sum + 4.0 / (1.0+x*x);

}
pi = sum * step;
printf ("pi = %6.8f\n", pi);

}
94

And	in	Conclusion,	…
• Multiprocessor/Multicore	uses	Shared	
Memory
– Cache	coherency	implements	shared	memory	
even	with	multiple	copies	in	multiple	caches

– False	sharing	a	concern;	watch	block	size!
• OpenMP as	simple	parallel	extension	to	C
– Threads,	Parallel	for,	private,	reductions	…	
– ≈	C:	small	so	easy	to	learn,	but	not	very	high	level	
and	it’s	easy	to	get	into	trouble

–Much	we	didn’t	cover	– including	other	
synchronization	mechanisms	(locks,	etc.)

95

