CS 110
Computer Architecture
Review Midterm Il

http://shtech.orqg/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Midterm II

Date: Thursday, May 17
Time: 10:15 - 12:15 (similar to last time)
Venue: Teaching Center 301 + 302

Closed book:

— You can bring two A4 pages with notes ((both
sides; English preferred; Chinese is OK): Write your
Chinese and Pinyin name on the top!

— This time HANDWRITTEN only!
— You will be provided with the MIPS “"green sheet”
— No other material allowed!

Midterm II

Switch cell phones off! (not silent mode — off!)
— Put them in your bags.

Bags to the front. Nothing except paper, pen, 1
drink, 1 snack on the table!

No other electronic devices are allowed!

— No ear plugs, music, ...

Anybody touching any electronic device will FAIL
the course!

Anybody found cheating (copy your neighbors
answers, additional material, ...) will FAIL the
course!

FUNCTIONS OF SEVERAL VARABLES | 2= £(x 1y), w= £0y,2)] Pomans: Allowrd Gy , (x4, 2) RMIGES: 25w'
LEVEL CURVES g;:g FUNCTION OF N VARIABLES £-d DEFINITION OF ConTINUITY

= = = LeT F 6E A lon oF Z VARIABLES DEFVED
?ow'r:u‘\(z WS(«;N«;. Z2 E0cxzee - xn RO (R 7\ 1c 4 oy 2N A e W CBNGE (M%) , BRLEPT POTSIBY
- Bwy G
R" — R 3w R Su -.) @CaMN L THEN T £)

W= F(*4,2)=k = ConsT| 1. ,.s.;..,‘m.,,,,c On Cnag)

N real vaciabes x 5 1912 (a,b)
SURFACE LAERS (3-D) ‘ A3 a Panctton & asingts oh-vartadle },(f, 7 ,,,_\ IF For. EvERY ¥ € Y0 , THEREIS & CORRESPND Mo
: Ko 0 Forstion of aingle vector vor, F=mongy] # 70 Sb. IF(x,4)-L|CT whsvavar 0L

PARTIAL 'DERlYATlVES De-ivnuv:s w/ Rgspect tome vavldole, [TF THE LIMIT AS A FUNCTION APP ROAL AeaNT
Z2=FGay) \oug nolding Hne oty victaloles codmut] (o, 6 ALONG TWo DIEFFERENT PATAS 1S NOT
&(w.«s\ ;x e z SAME Hotps FOR FUNCTOS | TME SAME, THE LIMIT Dos NOT Bxs T ©

OF Mong THAN Two 6 1 » uUSs AT (a ! Tae uMIT
£ 9 (g = fy= hf- ?':EE)_ VARIAGIES Gag) s conTne by \F

OF (14 &g (’“‘l’—‘“‘b\ BxsTs.
SECond Phk‘\‘lkL DEF-\VATI\EG

CLAR AUTS MPOS ITE FUNCTIONS oF ColTINWOUG FUNCTIos|

3 G-

o B BE 55 - 2 (B
s S 5 ()

IF Fxy AND Fyx
ARE BOTA GNThaoUS

ME CONTINVOUS |, AS ARE SuMS AND PRODULT
EGUATIONS OF TA L Tosu

2=£Gay) @ (%0,Yo; 2) EVKIWKTED ATA POINT

5,..5 (a®)= £yyc(a,b)

230z £ (Xe40) Cr—30) + by Bos,40) (4 -Y0)

ToTAL DiFFERENTAL | (”"i* FONAK SROHE

Fyx= _?a(ﬁ%) WE 285 l(g? PARTIAL DIFE. EQS

T2 bkanj J[TAPLACE " T
2 (aj i(gi %’5; re0 e €8 « Suticldn +-yfeagidy = A"" %d‘i
il %f) oy2” & 3) 2= L saw e Avc, g Ay S ‘“ﬂ"‘

o 2 SMALL By, By Ax=0dhx
THE CHAMIN RULE [SWOLE VABABLE 4=5Gd), x=gU8) | le "F‘%\‘i TF £x Wb&-; ':"EC&)T)NADE :;5%4&

4= (g00)-9'(¥) e (s L:::ﬁ:: h.l,»\.& .c?mau\ 2 Claag In halguk
CAGEi 2 {r(xup L X2GE), yzh) e a,&rgm,um) oo Bios (d2)
Z’_g bz = -F(An»q\whd) f(a,0) | THEOREM
z< a‘az g% or w/g=F -§sz+

Az = 6.00,0) D% +Hyla,b) By + € D% & €2 AY Glnen,
€100 €2 Wp Functlons of B aned Dy sk

cave 2] 2= £ 1xy) x=aGw), Y=cs (& ie E—Ka(ﬁ.n,h(s,e\) Aegroscla O as (B, A\ — (0,0) ;.
53 Bbx 22 2z _ Mnosm:n.fo o
%g b‘ =% Si‘* L,,‘! Loy peeh] 5 £ 15 DIFERENTINBLE @ (A) foc 2= Flxy)

Yo CAN FiND

B H w) x,..l—_g(e. - tm) |2
I i ERaE e i
5 BN o 8 RTE 2
Obs i Oy L*D“ i 4&5‘%1: Seoa Ui ® % ® % 2 m;‘ww““m:
[ey DIEFEReNATION] You can s soive for §or 2L v , 2 m@:wm i) Sk
gﬂ;;g’g;% oo Ex 22 -3 -ma[THE mmsm' vecvoql 2=£09) Fohrr
3 > 3 T oyt w2t H
% 24 G VeGay)= (x.,\} =[x Fy)= (%{; a&)
e 3t o0 T] ARy ‘“"‘“‘WW“‘W"LM’:\V&SI DIF, 7= ()

TANGENT PLANE T0 A LEVEL- SURFACE [PF L ToTarNetbe| D £ Geu= £, 0 £
Fu (=% + Ty (3-9 0 g oo W2 Ee0ng) a v Ry Geud b SAME For
% (27X + Ty (4= 4V + 5 (22070 o cpgagn| VE T (I=0 D@ Flxe) = WEb) S Uiy

Nﬂﬂm—twstaabeva_s.m ¥ - 4-Yo_ 3-20 ML O
[= 25 (oodd [DT e ocours wben UF tsinte s ama Dir. a5

LD DERMITIoN

“’“g! = '*‘-lasm.@ Fixu2)= Hx-gl =0 LEVEL SURTALE w/ k=0 | e = V6T = [e\ [Tl cose = W] @1=1=0s0)
THEN -4 V= Sy 1) wd TN pyedire] i—z.:&(mv&.s(g-g.s o T GoADIE T Vecton POBTS 1 THE DIRECTON
OF STEEVEST ASCENT 0R DBESCENT (awASUE
TENT VECToR 15 0R THoGoNAL To THE
LEVEL CURVES OF A SURFACE

MAXIMUM AND MINIMUM VALUE S Z‘Hxﬂg\
£x(ao)=0 &g(n.u)—? VElap)= (0,00

NoT SUF FLEENT &umuﬂée A Mac<. 0z Mt N-
Boax T ig_o Solva For Oriveal We, (Aways dwad< (0,0 Y Hg ovigim
THEN A—’?Pw THE IND DE‘L\vAfnvs "EST Fnd fex, “;1 Frey:

22D70 , Hex70 LoCAL MIN,

T FRS ISR ComPaNENTS As £

INDEPENPENT VARABLES, N° (6 f
F | B S 5 TOFINS THE NoBMAL (AN LNTER-

Fyx by 7Y LbY0 | Fux<o Local MAx | TOASURFACE, LET THAT SURFALE BE THE
+D <O SADDLERT. Do MEIRE| LEVEL SET OF SoME HIGHER DIMENSIONAL

| EIND ING ABSOLUTE MAX. AND Ml ms FanCTioy. THEN THE GRADIENT OF THE
[Find aues of ¥ ot e crisieal polnks. of Hioreg D FupNcTon S | To YouR SUae (e

s Y

2. Find Hae Oxtyams valies of £ on e B-wun,-:—b — =
i g TR 4o =¥y rz%] Lot Wz xtrgiez?-1
3. The lages+ value fom 4,,2. 15 Hae ABS. MAX, Mo Suagliast Eratiased g i LavEl SET W0

WX TMTZNG AND MINIM12ING ' Sck o 0 funeHon of Fwo s,) 12
Varlables of ¥ae Sorm 7= $iey) ard Frth Dodna Usual Roking J ;_;7!;;“;212) 'i;-::_m VECTORTOTE

72y

e 2o fgp

veloesry
dipiacinr iy
e

et ersy
- kinenc "

f1es M

7o

)

S e

—_—
:’ﬁ;.ﬂ L/gmu ! # ¥ the et

Mﬁ%
Acceleration N /f!m}’ ona/
Lt A AN

ind wiery oA AL,
MMM’L

i mmiq”” rmr it
%ﬁf‘” o niganw

y staL

orc L

N ity i)

s Couid proctuce contirculs spoctra

r Parrow brght 110es on a blac
ckqro

o~ TG S

LN e |
IENVE | f“»i‘?’lu e w

WW oF run
oo ol a, o aliel
r i U (P

on of

—
; ~flom point

Pl ACTION /S THEE ENDING OF LIG HT
PIFFR (% 7

AROUIND CBSTACLES ANP TH
APE RT(JR ES

Ao T oo

ErMisaion
pectral <lu., Slas //mm.r‘ Jcheme
W baared OF Tiparcit

o a A

cecl er Srars have mote COmMplx e
mau

et = ey

(uce

Mm1p:adxv(;7 fmtdnuqn

Liffere 1 magnitude = 2.512 x
differerce of \agn bnghfer-
Luminosity

e tote

ure erergy
ated O\.\‘f'a.r/u‘lm i
7m hofﬁzr me star megmww 113

fui
A hc bt u the star (vurface, radsud)
réﬁﬂv furmineus B
epheidy ard STarE That v
: nvr\mis over peNoad of 7Cd
Ampwwd& range: 0.5~ zma

i
nawvey
Joure

(2 tower The rmaanitude the brnghter m tod

doan't aluvu nt 10
- adiows niott uq
O me i

OPAQUE =
TRANSPARENT
TEANSLUCENT ¢

dlstorts the path 1 budr the imdee .

No material can allew 1004 of
 Thoudil, :

QI() ver

i
fmfer medlum

aﬁ, sz THE SUN 1 AN o&mNﬂm 62 <TAR
oughtut FUION x
4H"— %$de + 2% + 2y,
i 1 Enéf { Cﬂ»a}'@d when twg
ki qg 'nuues tuge toforg
ney releaie e

(

SIFT REFERENCE GUIDE (V.1.1) — CREATING TIMELINES WITH THE SIFT WORKSTATION)

(Lvm mllmmnwm/mj — [2.B0OTSFTVM | ’

ooy

1|'>

~»

[log2timeline PARSING PLUGINS
apache2_error - Apache2 error log
file
chrome - Chrome history file
encase_dirlisting - CSV file that is
exported from encase
evt- Windows 2k/XP/2k3 Event Log
evix - Windows Event Log File (EVTX)
exif - Metadata information from files
usng ExifTool

kmark - Firefox bookmark file
firefox2 - Flreloxz browser history
llnlox! Firefox 3 hlslocy file

dirfisting - CSV file that is

exponed from FTK Imager Idkllsﬁvg)
generic_linux - Generic Linux logs
start with MMM DD HH:MM:SS
iehistory - index.dat file containg IE
history
fis - 1S W3C log file
lsm ISA text export log file

ntfs_change - csv output file from
JP-(NTFS Change |
mactime

pad: SIFT Workstation VM Appliance)

Bl Workstation Installation (7) |
J

» |8

|2 -~
= ,‘"" ‘ Login:

Password: forensics

sansforensics

P B) ¢

4. CONNECT IMAGE TO L |
$ sudo su la SIFT
'{Plug hard drive to physical | 5
| host and attachto SIFTVM | '

5. HARD DRIVE MOUNTING (if you are using log2timeline-sift and Single DD you can skip to 7-A)

) -

pt_ewf.py image.E01 /mnt/ewf

SINGLE OR SPLIT IMAGE (2 options): ;‘ (U mount -t ntfs -o ro,loop,show_sys_files,streams_interface=wil
t offset=#### /mnt/ewf/<image> /mnt/windows_mount/

L image.E01 /mnt/ewf/ \~’)

(MOUNT TO MOUNT POINT

(SINGLE INTY

\N mount -t ntfs -G

_sys_files,streams_interfaceswindows,offset=####4 image.dd /g

((SPLIT IMAGE (2 step pre

(& affuse image.001 /mnt/aff
\l mount ~t ntfs-3g o loop,ro,sho

mnt/aff/<image> /mnt/windows |

N COMPUTER

and INCIDENT RESPONSE

E PURPOSE OF THIS REFERENCE
IDE IS TO WALK THROUGH THE
ESS OF BOOTING THE SIFT
ORKSTATION, CREATING A TIMELINE

SUPER” OR "MICRO") AND '
REVIEWING IT.
" HOW TO CALCULATE THE OFFSET

FOR MOUNTING

mmis
2. Identify partition and byte offset
3. (Partition byte offset) x (bytes per
sector) = offset #### to use!

| Example: 63 X 512 = 32256

1. Run mmis to query partition layout
image.E01

Note: If needed, repeat for each
partition. Make new mount point:
mkdir /mnt/windows_mount2/

="

&Wk{:&;:‘ﬂlﬁ!ﬂ?ﬂlh&TﬂM

- Body file Inlhe
format

mcafee - Log file
mft- NTFS MFT file

|_errlog - ERRORLOG file
produced by MS SQL server
ntuser - NTUSER.DAT registry file

opera - Opera's global history file

exml OpenXMl. document peap
peap - PCAP fi
pdf dAvtilable POF document

metadata

prefetch - Prefetch directory
recycler - Recycle bin directory
restore 0.9 - Restore point directory
safari - Safari m«mlsl file

sam - SAM registry

security - SECURITY registry fil
m SetupAPl log file In

m::l Skype database
SOFTWARE registry file

sol - sdsgsg)aarllashcookleﬂle
squid - Squid access
(http_emulate off) -

Body
volatility - Volatility output files
(psscan2, sockscan2, ...)
win_link - Windows shorteut file {or
a link file)
wmiprov - wmiprov log file
xpfirewall - XP Firewall log

List plugins i log2timeline -f list

«.HELP EXPAND THIS LIST. BUILD
PLUGINS!!!

BY DAVID NIDES {12/16/2011))\f
TWITTER: @DA

EMAIL: DNIDES@KPMG.COM
CREDITS TO: ED GOINGS, ROB LE
KRISTINN GUDJONSSON, KPMG &
QUESTIONS/FEEDBACK-CONTACT

BLOG: DAVNADS BLOGSPOT com s

Red text - image/source

Blue text — mount point

Purple text - output file

Green text - log2timeline plugins
Brown text - TimeZone

8
!
1
[
|
|
|
|
l
|
|
|
[
|
|
v

(7-A: AUTOMATED SUPER TIMELINE CREATION
log2timeline-sift -0 ~z [TIMEZONE] -p [PARTITION #] -i [IMAGE FILE]

Lmsxlm(mnmm mount, and run): j

Xp (# logltimellne—sift -2 ESTSEDT -i image
S

WIN7 (# log2timeline-sift -win7 -z ESTSEDT -i image

(FOR PARTITION (mount and run using all applicable p

XP ij# log2timeline-sift ~z ESTSEDT -p 0 -i partig

WIN7 s log2timeline-sift -win7 -z ESTSEDT

{ OTHER USAGE EXAMPLES:

' Display list of available p
log2timeline -f list
Run log2timeline usg

log2timeline-sij

Help (man pag
| ¥ log2time

use only specific plugins:
preftch =z ESTSEDT -i image.dd

9

8. CSV j (/cases/timeline-output-folder)) ‘

e event, in the format of MM/DD/YYYY

Bf day, expressed in a 24h format, HH:MM:SS

= the timezone that was used to call the tool with.
® MACB meaning of the fields, comp w/ mactime format.

ce: Source short name (i.e. registry entries are REG)

ourcetype: Desc of the source (“Internet Explorer” instead of WEBHIST)

“type: Timestamp type (ie. “Last Accessed”, “Last Written”)

-user: Username associated with the entry, if one is available.

-host: Hostname associated with the entry, it one is available.

-short: Contains less text than the full description field.

-desc: where majority info is stored, the actual parsed desc of the entry.

-version: Version number of the timestamp object.

filename: Filename with the full path that contained the entry

-inode: inode number of the file being parsed.

-notes: Some input modules insert additional information in the form of a

note, which comes here. Or it can be used during the review.

format: Input module name used to parse the file.

-extra: Additional information parsed is joined together and put here.

5 r-P(

=¥ °
7-A&7-B
(4 INUAL “MICRO” TIMELINE CREATION) ««—~
» ONS] [-f FORMAT] [-2 TIMEZONE] [-0 OUTPUT MODULE] [-w HELP? OPTIONS? USAGE?)
_FILE/LOG_DIR [~] [FORMAT FILE OPTIONS] log2timeline -help
Log2timeline-sift -help

METADATA (using log2timeline or fis)

\LZ!__pmcess -help)

log!
mft.bos
OR Extract
#fls -m " -0 off
Convert body file fo!
_# mactime b fls.body

mft -0 mactime -r -z ESTSEDT -w
me/
pee using Sleuthkit:
dd > fis.body
prmat w/ mactime:

gtem data w/log2timeline from mounted file system]
=

(AR‘I’IFACTS (run 12| on mounted file plugins recursively)

2 file éystem:
DT -w

(‘Extract artifacts w/ log2timeline and ru
log2timeline -f firefox3,chrome -0 mactil
web.body /mnt/volume/
Convert body file format to CSV format w/ mactime®
_# mactime -b log2timeline.body ~d > log2timeline.csv

9. FILTER TIMELINE

Filter timeline with date range to include only:
12t_process -b timeline.csv MM-DD-YYYY..MM-DD-YYYY > filtered.csv
Filter timeline with keyword list (one term per line in keywords.txt):
12t_process -b timeline.csv -k keywords.txt > filtered.csv

What sources are in your timeline?

awk-F , ‘{print $6;) timeline.csv| grep-v sourcetype|sort | uniq

Find all LNK files that reference E Drive

grep“Shortcut LNK” timeline.csv| grep"E:”

FiindMountPoints2 entries that reference E Drive

grep“MountPoints2 key” timeline.csv} | grep“E drive”

grepUSB timeline.csv| grep“SetupAPILog”

(OTHER log2timeline Q 0)
OUTPUT FORMATS

Note: CSV is Default Output
-MacOS X i tool

<CEF - Common Event Format - ArcSight

-CFTL - XML file- CyberForensics TimeLab

visualization tool

CSV - comma separated value file

-Mactime - Both older and newer version of

the format supported for use by TSK's

mactime

-SIMILE - XML file - SIMILE timeline

visualization

-SQLite - SQLite database

~TLN - Tab Delimited File

-TLN - Format used by some of H Carvey

tools, expressed as a ASCH output

~TLNX - Fotmalused by wmeof H Carvey

tools, d as a XML

0. CONNECT TO SIFT)

SETTINGS -> OPTIONS -> Shared
s -> Always Enabled (Check)

.
y/ 2.SIFT Desktop > VMware-Shared-Drive

J Access from a Win Machine
\\SIFTWORKSTATION

ill

(1LREVIEWTIMELINE)

(Eile System ™M A C B Review timelines using:
Ext2/3 Modified Accessed Changed N/A | - Open, Soft, Filter with Excel
FAT Written Accessed N/A Created - - Import into SPLUNK
NTFS File Modified Accessed MFT Modified Created SIMILE
UFS Modified Accessed Changed N/A ('J\ Tapestry

Do not look inside the midterm until we tell
you to (until the time starts) !!

10

Midterm II

* Ask questions today!

* This review session does not/ can not cover all
possible topics!

* Topics: SDS till Data-Level-Parallelism

Synchronous Digital Systems

Hardware of a processor, such as the MIPS, is an example of
a Synchronous Digital System

Synchronous:

e All operations coordinated by a central clock

= “Heartbeat” of the system!

Digital:
e Represent all values by discrete values
e Two binary digits: 1 and O
e Electrical signals are treated as 1’'s and O’s
e 1 and 0 are complements of each other

e High /low voltage for true / false, 1 /0

12

Combinational Logic Symbols

e Common combinational logic
systems have standard symbols
called logic gates

— Buffer, NOT
A 4> vi
— AND, NAND

s D
B — Z

1V

oV

oV

1V 13

Inverting versions (NOT, NAND, NOR) easiest
to implement with CMOS transistors (the

switches we have available and use most)

13

Boolean Algebra

Use plus “+” for OR
— “logical sum” 1+0=0+1 =1 (True); 1+1=2 (True); 0+0 = O (False)
Use product for AND (a*b or implied via ab)

— “logical product” 0*0=0%*1=1*0=0 (False); 1*1 = 1 (True)
“Hat” to mean complement (NOT)

Thus

ab+a+¢C

a*b+a+7cC

(a AND b) OR a OR (NOT c)

Truth Tables a b c d|y
. . . O 0 O 0] F@0000
for Combinational Logic o o o 1|F0001)
0 0 1 0] F00,10)
A O 0 1 1] F@0)0,1,)
— O 1 0 0] F@©,1,00)
B 0 1 0 1/|F®0,10,0)
C’ E Y 0 1 1 0]|F0,1,10)
- 0 1 1 1]|F@0,1,1,1)
D 1 0 0 0| F®1000)
—> 1 0 0 1| F1,0,0,1)
1 0 1 0] F1,0,10)
Exhaustive list of the output value 1 0 1 1|Fa10,1,1)
generated for each combination of inputs 10 0}]F1,100)
1 1 0 1]|F1,10,0)
How many logic functions can be defined 1 1 1 0]|F1,1,10)
with N inputs? 1 1 1 1]|FQ1,1,1,0)

15

Boolean Algebra: Circuit & Algebraic
Simplification

original circuit
equation derived from original circuit

algebraic simplification

simplified circuit
16

Representations of Combinational
Logic (groups of logic gates)

Enumerate
Enumerate Sum of Inputs
Inputs Products,
Product of Sums
Methods

Use Equivalency between
Boolean Expression boolean operators and Gate Diagram
gates

Question

Simplify Z = A+BC + A(BC)

18

Signals and Waveforms

addér‘ CJFCU‘I"'

ST

7

L

Type of Circuits

* Synchronous Digital Systems consist of two
basic types of circuits:

 Combinational Logic (CL) circuits

— QOutput is a function of the inputs only, not the history
of its execution

—E.g., circuits to add A, B (ALUs)
e Sequential Logic (SL)
e Circuits that “remember” or store information

e aka “State Elements”
* E.g., memories and registers (Registers)

Uses for State Elements

* Place to store values for later re-use:
— Register files (like $1-S31 in MIPS)
— Memory (caches and main memory)

* Help control flow of information between
combinational logic blocks

— State elements hold up the movement of
information at input to combinational logic blocks
to allow for orderly passage

21

Recap of Timing Terms

Clock (CLK) - steady square wave that synchronizes system

Setup Time - when the input must be stable before the
rising edge of the CLK

Hold Time - when the input must be stable after the rising
edge of the CLK

“CLK-to-Q” Delay - how long it takes the output to change,
measured from the rising edge of the CLK

Flip-flop - one bit of state that samples every rising edge of
the CLK (positive edge-triggered)

Register - several bits of state that samples on rising edge
of CLK or on LOAD (positive edge-triggered)

Maximum Clock Frequency

 What is the maximum frequency of this circuit?

Inputs |

Combinational
Logic

OutEuts Hint:
Frequency = 1/Period

>

>

I Next State

> Register

Current Statel

Max Delay =

Setup Time + CLK-to-Q Delay + CL Delay

23

FSM Example: 3 ones...

FSM to detect the occurrence of 3 consecutive 1’s in the input.

<~ Y ey B . e pr
TINPUT .¢|1@\|¢III®||\ICD|llI\l

%

ouThuT Eml L InEEt

L/ Input/output

Draw the FSM... . \
@@ :

Assume state transitions are controlled by the clock:
on each clock cycle the machine checks the inputs and
moves to a new state and produces a new output...

Datapath: Five Stages of Instruction

Execution
Stage 1: Instruction Fetch

Stage 2: Instruction Decode
Stage 3: ALU (Arithmetic-Logic Unit)
Stage 4: Memory Access

Stage 5: Register Write

25

Stages of Execution on Datapath

PC

<

¢

rd &
S>> ¢ ’
B5 o |rs R -
S € =P (o) > ALU 8 o
Eo | o © £
g s > >)] CIEJ
- iImm >
.
N > o P o P o >
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Register
Fetch Register Write

Read

26

Datapath Control Signals

e ExtOp “zero”, “sign” * MemWr: 1 => write memory
e ALUsrc 0 => regB; * MemtoReg: 0=>ALU; 1=>Mem
1 => immed * RegDst: 0=>"rt";1=>"rd”
e ALUctr “ADD”, “SUB”, “OR” * RegWr: 1 => write register
e nPC sel 1 => branch
RegDst Rd Rt ALUctr MemtoReg
Inst Address % |—> 1 0 MemWr
RegWr Rs Rt
‘_, nPC sel & Equal —g—l 5| 5* 5*
o T = AR] 7 g 32
:/ 0] IS 3 RegFile bl/,ISB N >E v, ;B\
=H=H A 11— /
NN [clk | _ N -
>% =1/ X Wi WrEn Ad
o| [3 imm16——| 3 {1 J Dataln |1
of clk 4 7 Data >
X 1 16 |af 32 /r Memory <
extop T Alusrc ck —p

27/
imm16

RTL: The Add Instruction

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

add rd, rs, rt
— MEM|[PC] Fetch the instruction from memory

0

— R[rd] = R[rs] + R[rt] The actual operation
— PC=PC+4 Calculate the next instruction’ s address

28

Instruction Fetch Unit at the Beginning of Add
* Fetch the instruction from Instruction memory:

Instruction = MEM|[PC]
— same for
all instructions Inst

Memory Instruction<31:0>

Inst Address

1
¥3dd
@)
~

imm1l6
29

Single Cycle Datapath during Add

op rs rt rd shamt funct

R[rd] = R[rs] + R[rt]

| 1apuaIXy

Summary of the Control Signals (1/2)

inst Register Transfer
add R[rd] & R[rs] + R[rt]; PC & PC + 4
ALUsrc=RegB, ALUctr="ADD”, RegDst=rd, RegWr, nPC sel="+4"
sub R[rd] & R[rs] — R[rt]; PC & PC + 4
ALUsrc=RegB, ALUctr=“SUB”, RegDst=rd, RegWr, nPC sel="+4"
ori R[rt] & R[rs] + zero ext(Immlé6); PC & PC + 4
ALUsrc=Im, Extop="Z", ALUctr="OR”, RegDst=rt,RegWr, nPC_sel="+4"
1w R[rt] & MEM[R[rs] + sign ext(Imml6)]; PC & PC + 4
ALUsrc=Im, Extop="sn’, ALUctr=“ADD”, MemtoReg, RegDst=rt, RegWr,
nPC sel = “+4”
sSwW MEM[R[rs] + sign ext(Imml6)] < R[rs]; PC & PC + 4
ALUsrc=Im, Extop="sn’, ALUctr = “ADD”, MemWr, nPC sel = “+4”
beq if (R[rs] == R[rt]) then PC & PC + sign ext(Immlé6)] || 00

else PC &< PC + 4

nPC_sel = “br’, ALUctr = “SUB”

31

Summary of the Control Signals (2/2)

See > func | 10 0000| 10 0010 We Don’t Care :-)
Appendix A > op | 00 0000| 00 0000| 00 1101| 10 0011| 10 1011| 00 0100} 00 0010
add sub ori Iw SW beq jump

RegDst 1 1 0 0 X X X
ALUSrc 0 0 1 1 1 0 X
MemtoReg 0 0 0 1 X X X
RegWrite 1 1 1 1 0 0 0
MemWrite 0 0 0 0 1 0 0
nPCsel 0 0 0 0 0 1 X
Jump 0 0 0 0 0 0 1
ExtOp X X 0 1 1 X X
ALUctr<2:0> Add [Subtract] Or Add Add [Subtract] «x
31 26 21 16 11 6 0

R-type op rs rt rd shamt funct add, sub

I-type op rs rt immediate
J-type op target address jump

ori, lw, sw, beq

32

Pipelining: Single Cycle Datapath

&
o > > 17
@) —)
a £ o |rs oo -
S £ > D > ALU S O
2 E > > 0O o
= &
+4 imm
. » > o — * -~ >
1. Instruction 2. Decode/ 5. Write

3. Execute 4. Memory
Fetch Register Read Back

33

Pipeline registers

d \ 4 &
.
] o g .5 - " %
» o > B O rs ‘oo > - L
S £ > Q » ALU & O
S o rt © &£
n £ > O o
g -
+a ! I‘ I
\ ; > ¢ >l & > ¢ > C= . =
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Write
Fetch Register Read Back

* Need registers between stages
— To hold information produced in previous cycle

34

Graphical Pipeline Representation

* RegFile: left half is write, right half is read

- e~) 5 =

Load
Add

Store

Sub
Or

- 0Da=<0

1$ |

_ Time (_cloc_k cy_cles_)

Reg

35

Pipelining Performance (3/3)

Single-cycle
T. =800 ps
f=1.25GHz

Pipelined
T. =200 ps
f =5GHz

Program
execution
order

(in instructions)

Time

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

Program
execution Ti
order

(in instructions)

lw $1, 100($0)
lw $2, 200($0)

lw $3, 300($0)

200 ps 200 ps 200 ps 200 ps 200 ps

200 400 600 800 1000 1200 1400 1600 1800
Instruction Dat
fetch Reg| ALU acc?ezs Reg
800 ps nenctonlmeg| A | 2| g
Instruction
800 ps fetch
800 ps
200 400 600 800 1000 1200 1400
Instruction Data
fetchI Reg(ALU access Reg
200ps | "o | |Fea| AU | aoces |Re0
200 ps " | [mea| A | 22 Ireg

36

Pipelining Hazards

A hazard is a situation that prevents starting the
next instruction in the next clock cycle
1) Structural hazard

— A required resource is busy
(e.g. needed in multiple stages)

2) Data hazard

— Data dependency between instructions

— Need to wait for previous instruction to complete
its data read/write

3) Control hazard
— Flow of execution depends on previous instruction

37

Structural Hazard #1: Single Memory

Time (clock cycles)

>

I 5 5

n Trying to read

s |Load 15 4 same memory

t twice in same

r |Instr 1 cl:ock cYcIe
 [Reg]

O [Instr 2)

g Instr 3 gl
It

' YInstr 4 'lﬁ i il s

38

Structural Hazard #2: Registers (1/2)

Time (clock cycles)

>
|
n
I$ L : : :
? Load 5 . Can we read and
write to registers
' linstr 1 : simultaneously?
7 [Reg| :
? Instr 2 1),
g Instr 3 0%]
O\
' YInstr 4 -@ gl 4 s

39

“~ e~ -

- 0Da=0

2. Data Hazards (2/2)

Data-flow backwards in time are hazards

IF_{IDIR

Time (clock cycles)

add $t0,5t1,$t2

I$

d

Reg

sub $t4,$t0,$t3
and $t5,5t0,$t6

or $t7,5t0,5t8

xor $t9,5t0,$t10

[1s

Data Hazard Solution: Forwarding

e Forward result as soon as it is available
— OK that it’s not stored in RegFile yet

IF_:IDIRF: >x§MEM§ WB :
add $t0,$t1,8t2] 1 JAxe] F)ed vs |- {is]

sub $t4,5t0,6t3 {13 [lresf’

and $t5,5t0,$t6 I$.?:Reg

or $t7,5t0,6t8 i 8 [

xor $t9,5t0,$t10

41

Data Hazard: Loads (1/4)

e Recall: Dataflow backwards in time are
hazards

IF

lw $t0,0($t1)| 1

sub $t3,5t0,$t2

e Can’t solve all cases with forwarding

— Must stall instruction dependent on load, then
forward (more hardware)

42

Data Hazard: Loads (2/4)

e Hardware stalls pipeline

— Called “hardware interlock” “horizontally”

. IF_:IDIRF, NEX i MEM: WB

Schematically, this is what we
want, but in reality stalls done

Reg|:

lw $t0, 0($t1) 1$
sub $t3,5t0,5t2

and $t5,5t0,$t4

iHow to stall

or $t7,$t0,$t6 Ejust part of —*/7 b’.

I

E

ipipeline?

Data Hazard: Loads (3/4)

* Stalled instruction converted to “bubble”, acts like nop

Iw 0, 0($t1)

sub $t3;6¢0,$t2

sub $t3,5t0,$t2}
and $t5,$t0,5t4

N

Reg

| 15

| D3

Firs:c two p.ipe

or $t7,$t0,$tstages stall by

repeating stage

one cycle later

ERegE

Reg |

dble

‘bub }{ bub I bub
:ble

le

| 18 |

5D$

Reg

44

3. Control Hazards

* Branch determines flow of control

— Fetching next instruction depends on branch
outcome

— Pipeline can’t always fetch correct instruction
* Still working on ID stage of branch

 BEQ, BNE in MIPS pipeline
* Simple solution Option 1: Stall on every
branch until branch condition resolved

— Would add 2 bubbles/clock cycles for every
Branch! (~ 20% of instructions executed)

Caches

Big Idea: Memory Hierarchy

Processor

Inner Increasing
distance from
. Level 1 pProcessor,
Levels in decreasing
memory / Level 2 speed
hierarchy Level 3
Outer
Level n
< >

Size of memory at each level
As we move to outer levels the latency goes up

and price per bit goes down. Why?

Adding Cache to Computer

Processor
Enable?

Read/Write

1 MO a
"N\ C&ZIoLC T O-
e ()

Arithmetic & Logic Unit
(ALV)

Processor-Memory Interface I/O-Memory Interfaces

48

Total Cash Capacity =
Associativity * # of sets * block_size
Bytes = blocks/set * sets * Bytes/block

C=N*S *B

Tag Index Byte Offset

address_size = tag_size + index_size + offset_size
= tag size + log2(S) + log2(B)

Clicker Question: C remains constant, S and/or B can change such that
C=2N * (SB)’ => (SB)’ =SB/2
Tag_size = address_size — (log2(S) + log2(B)) = address_size — log2(SB)
= address_size — (log2(SB) — 1)

Principle of Locality for Libraries /Computer
Memory

Hierarchy of Memories (speed/size/cost per
bit) to Exploit Locality

Cache — copy of data lower level in memory
hierarchy

Direct Mapped to find block in cache using Tag
field and Valid bit for Hit

Cache design choice:

* Write-Through vs. Write-Back

Cache Organizations

* “Fully Associative”: Block can go anywhere
— First design in lecture
— Note: No Index field, but 1 comparator/block

* “Direct Mapped”: Block goes one place
— Note: Only 1 comparator
— Number of sets = number blocks

* “N-way Set Associative”: N places for a block
— Number of sets = number of blocks / N
— N comparators
— Fully Associative: N = number of blocks
— Direct Mapped: N = 1

51

Processor Address Fields used by

Cache Controller
Block Offset: Byte address within block

Set Index: Selects which set

Tag: Remaining portion of processor address
Processor Address (32-bits total)

<

>

Tag

Set Index

Block offset

Size of Index = log2 (number of sets)

Size of Tag = Address size — Size of Index

—log2 (number of bytes/block)

52

Write Policy Choices

 Cache hit:

— write through: writes both cache & memory on every access
* Generally higher memory traffic but simpler pipeline & cache design

— write back: writes cache only, memory "written only when dirty
entry evicted

e Adirty bit per line reduces write-back traffic
* Must handle 0, 1, or 2 accesses to memory for each load/store

* Cache miss:
— no write allocate: only write to main memory
— write allocate (aka fetch on write): fetch into cache

e Common combinations:
— write through and no write allocate
— write back with write allocate

Direct-Mapped Cache Review

* One word blocks, cache size = 1K words (or 4KB)

Byte offset
3130 1312 11 ... 210/

X

Valid bit Ht 1ag ~ 20d ‘I\lo Data
1 Index
ensures — Dt Read
something e — ata data
useful in ; from
cache for N cache
this index | | instead
1021 I Of
Compare 1073 memory
Tag with 120 32 if a Hit
upper part of
Address to Comparator
see if a Hit

54

Sources of Cache Misses (3 C’s)

 Compulsory (cold start, first reference):

— 1%t access to a block, “cold” fact of life, not a lot you can
do about it.

* If running billions of instructions, compulsory misses are
insignificant

* Capacity:
— Cache cannot contain all blocks accessed by the program
* Misses that would not occur with infinite cache

e Conflict (collision):
— Multiple memory locations mapped to same cache set
* Misses that would not occur with ideal fully associative cache

55

Impact of Cache Parameters on
Performance

 AMAT = Hit Time + Miss Rate * Miss Penalty

— Note, we assume always first search cache, so
must charge hit time for both hits and misses!

* For misses, characterize by 3Cs

56

Local vs. Global Miss Rates

Local miss rate — the fraction of references to one
level of a cache that miss

Local Miss rate L2S = SL2 Misses / L1S Misses

Global miss rate — the fraction of references that
miss in all levels of a multilevel cache
* L2S local miss rate >> than the global miss rate

Global Miss rate = L2S Misses / Total Accesses
= (L2S Misses / L1S Misses) x (L1S Misses / Total Accesses)
= Local Miss rate L2S x Local Miss rate L1S

AMAT = Time for a hit + Miss rate x Miss penalty

AMAT = Time for a L1S hit + (local) Miss rate L1S x
(Time for a L2S hit + (local) Miss rate L2S x L2S Miss penalty)

In Conclusion, Cache Design Space

Cache Size

A

e Several interacting dimensions
— Cache size
— Block size Associativity
— Associativity
— Replacement policy
— Write-through vs. write-back
— Write-allocation

* Optimal choice is a compromise

— Depends on access characteristics
* Workload
* Use (I-cache, D-cache)

— Depends on technology / cost Good | FactorA Factor B
* Simplicity often wins Less More

Block Size

Bad

58

lron Law of Performance

* A program executes instructions

. CPU Time/Program
= Clock Cycles/Program x Clock Cycle Time

= Instructions/Program
x Average Clock Cycles/Instruction
x Clock Cycle Time

e 1stterm called Instruction Count

e 2"dterm abbreviated CPI for average
Clock Cycles Per Instruction

 3rd termis 1/ Clock rate

59

IEEE 754 Floating-Point Standard (1/3)

Single Precision (Double Precision similar):

3130 23 22 0
IS| Exponent |

1 bit 8 bits 23 bits

* Sign bit: 1 means negative O means positive

in sign-magnitude format (not 2’s complement)

— To pack more bits, leading 1 implicit for normalized numbers
— 1+ 23 bits single, 1 + 52 bits double
— always true: 0 < Significand < 1 (for normalized numbers)

 Note: 0 has no leading 1, so reserve exponent value 0 just for
number O

IEEE 754 Floating Point Standard (2/3)

* |[EEE 754 uses “biased exponent”
representation
— Designers wanted FP numbers to be used even if no

FP hardware; e.g., sort records with FP numbers
using integer compares

— Wanted bigger (integer) exponent field to represent
bigger numbers

— 2’s complement poses a problem (because negative
numbers look bigger)

* Use just magnitude and offset by half the range

IEEE 754 Floating Point Standard (3/3)

» Called Biased Notation, where bias is
number subtracted to get final number

 [IEEE 754 uses bias of 127 for single prec.

- Subtract 127 from Exponent field to get actual
value for exponent

 Summary (single precision):
3130 23 22
IS| Exponent | Significand

1 bit 8 bits 23 bits
*(-1)° x (1 + Significand) x 2(Exponent-127)

* Double precision identical, except with
exponent bias of 1023 (half, quad similar)

Flynn* Taxonomy, 1966

Data Streams

Multiple

Single SISD: Intel Pentium 4 SIMD: SSE instructions of x86

Instruction
Streams Multiple MISD: No examples today

MIMD: Intel Xeon €5345 (Clovertown)

* Since about 2013, SIMD and MIMD most common parallelism
in architectures — usually both in same system!

* Most common parallel processing programming style: Single
Program Multiple Data (“SPMD”)
— Single program that runs on all processors of a MIMD
— Cross-processor execution coordination using synchronization
primitives
* SIMD (aka hw-level data parallelism): specialized function
units, for handling lock-step calculations involving arrays

— Scientific computing, signal processing, multimedia

audio/video processin
(/ P g) *Prof. Micha