CS 110
Computer Architecture

Operating Systems, Interrupts, Virtual
Memory

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

C Programs

CA so far...

MIPS Assembly int sibline

Project 2 e

- £00 £ib(n-2);

1w $t0, 4($x0) }

CPU addi $t1, $to0, 3

beqg $tl1, $t2, foo

nop
I i t 1
- <<2 [0
ntrudtion Fetch [, [Memory te
' P——
'
! e0e /Users/maas/Desktop/04/listmanips.s - MARS 4.5
. 5 File Edit Run Settings Tools Help
Copen Jrw g2 | R spesd at o (o veaction)
. - [DEEEEE] S e hHae xoeeeewle — 3
_ rat| |1 finspo:e) gister -
3 - Aol 0 Edic s Coproc 1 Coproc0 |
Fll (Edit |
Mction o ' - Name Number Value
Memory ' 5] et Seqn szero 0 0400000000
Wie ' Bkpt Address Code 15i Source at 1 0x00000000
Etle ' 0x00400000 0x0c100021 jal 0x00400084 6: main: jal create_default_list V0 2 0x00000000
' 1 Eetie ' 0x00400004 0x00408021 addu $16,52,50. addu $s0, Sv0, $0 # Sv0 = $s0 is head of node is | |sv1 3 0x00000000
' T T F %) 000400008 0x3co11001 Lui $1,0x00001001 10: la $a0, startssg 520 4 o0y00000000
' H ' 0x0040000C 0x34240000 or 54, 51,0x00000000 sa1 s oxoo000000
i o 0x00400010 0x24020004 addiu 52,50, 0x00000004 11: U ose, s sa2 6 oxeoooonoo
' 0x00400014 030000000 syscal syscall 523 7 oxa0000000
' ' ' 0x00400018 0x02002021 addu $4, $16, 3 15 u $a0, $s0, $0 510 8 0x00000000
1 1 [0x0040001C 0x0c100030 jal 0x004000¢0 16: jal print_list st1 9 0x00000000
Reghtt Asc Awar [— 0100400020 0x0¢10003b Jal 0x004000ec 19: jal print_newlin st2 10 0x00000000
) oxo0d00024 002002021 addu s4,516,50 2 adds $aD, 550, 50 # load the address of the first | g3 1 oxoo000000
(Control Unit 000400028 0x0C100013 jal 0x0040004C jal map st 12 oxo000000
N 0x0040002¢ 0x3cO11001 Lui $1,000001001 28: la s, endnsg st 13 0x00000000
0x00400030 x3424000e or $4, 51, 0x0000 ste 14 ouweooo000
0x00400034 0x24020004 addiu $2,30,0x00000004 29: u $v0, 4 " st 15 0x00000000
") 0x00400038 0x0000000c syscall s syscall 50 16 o«o000000
") 000400040 0x0c200030 2L 0x0D4D0DCD En jal print_List 522 18 0:00000000
0x00400044 0x2402000a a0y $52,50,0x00000008 36+ U s, 10 553 13 ox00000000
ssa 20 000000000
sss 21 ouweo0000
— ss6 2 odo000000
e jData Seqment $s7 23 0x00000000
Address Valie (+0) Vaive (+4) Value +5) Value (+0 Value (+10 sto 28 oxdonoee0
ox10010000 ax7aTIsac ox66656220 oxaass7261 ox64con20 o | st %5 0:00000000
0x10010020 0x00000000 0x00000000 000000000 0x00000000 o | sk % oxde000000
Byte 0310010040 axa0000000 ox00000000 000000000 ox0o000000 o | s 27 ox00000000
Hit 5% Bun .. s3210 BY Data 0x10010060 0x00000000 0x00000000 000000000 0x00000000 o | g % ocoooaoe0
offset 10010080 0x00000000 0x00000000 0x00000000 0x00000000 o | oo N irrerte
a (: e S Orioot00a0 oxaoooc0n0 0100000000 oxaoooocan 0100000000 o | [it 5o axoooanen
Tag 20 8 Block offset 11000 0xA0AN00ND Ax0A000000 P AxHAANAAN0 o | lsra s 0x00000000
Index —
Index Valid_Tag Data
o [T T T T T |
1 I I I I |
2 H | | | | |
& ke © |
= o0

So how is this any different?

Storage

C Programs

Adding 1/0

MIPS Assembly int fib(int n) {

Project 2 S

-foo £ib (n-2) ;

1w $t0, 4($r0) }
addi $tl1, $t0, 3
beqg $tl1, $t2, foo

nop

Project 1

Screen Keyboard Storage

A A

Hit

Caches /0O (Input/Output)

Memory c
g)/ L N ® $ ©
Df:\zo < > gn _'g §
- & I

Raspberry Pi (< 300RMB on jd.com)

e ———————— —— — — — — —— — o — ——

s wR50 04
A nRd -

R i + V1. oF
aspberry |Pi) Model B+ V1.2 ‘.’3:31‘7’"“

@é @©Raspberry Pi-2014 Siu) C = 38az c98 Serial |/O
a Aetitiannniinnid Y L
PR (uss)

S Haan
)

Storage I/O
(Micro SD Card)

\'/ WV s B

— ';?7”:. - = J10
’ 333..,..;*‘ "u E ' j g
; _'.a..--.fls-o:' 2] Network 1/0
4t Hlerte B
S aeltEy] Screen /O ' (Ethernet)
TERNC IS

It’s a real computer!

But wait...

* That’s not the same! When we run MARS, it only
executes one program and then stops.

* When | switch on my computer, | get this:

o=

wEddEPDD Im e

B Files & Folders

_

How fast.ogg

Image Viewer

SuperTux 2

N) 18:53 %
Filter results +

Categories

Books

Graphics Help

Info More suggestions

Photos Recipes
Reference Social

Videos Weather /
getifity & Text Entry Ubuntu One
web PriVacy

Sources v

g R

Network Power

i@ Tempia Folder |
il Videos oitems Folder | D () =4
@rash [Examples 9,0k Text =4 N A<\
e Printers sound Wacom Tablet
[®21 B Volume
system
- 6
- ¥ @) &) -
84768 volume Backup Details Landscape Software & Time & Date Universal User Accounts
[computer Service Updates Access
Natwork

Yes, but that’s just software! The Operating System (OS)

Well, “just software”

* The biggest piece of software on your machine?

* How many lines of code? These are guesstimates:

Mic

00000

soft Visual Studio 2012

US Army Future Combat System
fast battlefield network system (aborted)

Debian 5.0 codebase
free, oper em

Mac OS X * Tg

Codebases (in millions of lines of code). CC BY-NC 3.0 — David McCandless © 2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/

What does the OS do?

One of the first things that runs when your computer
starts (right after firmware/ bootloader)

Loads, runs and manages programs:

— Multiple programs at the same time (time-sharing)

— Isolate programs from each other (isolation)

— Multiplex resources between applications (e.g., devices)

Services: File System, Network stack, etc.

Finds and controls all the devices in the machine in a
general way (using “device drivers”)

Agenda

Devices and I/O

OS Boot Sequence and Operation
Multiprogramming/time-sharing
Introduction to Virtual Memory

10

* Devices and I/O

Agenda

11

How to interact with devices?

 Assume a program running on a CPU. How does it
interact with the outside world?

* Need I/0 interface for Keyboards,
Network, Mouse, Screen, etc.

— Connect to many types of devices

— Control these devices, respond PCI Bus >
to them, and transfer data

— Present them to user < >
SCSI Bus
programs so | | l

they are useful < > -7 %@

Operating System

Mem

XS

&

cmd reg.
data reg.

Instruction Set Architecture for I/O

* What must the processor do for I/0?
— Input: reads a sequence of bytes
— Output: writes a sequence of bytes

* Some processors have special input and output
instructions

e Alternative model (used by MIPS):
— Use loads for input, stores for output (in small pieces)
— Called Memory Mapped Input/Output

— A portion of the address space dedicated to
communication paths to Input or Output devices (no
memory there)

13

Memory Mapped I/0O

* Certain addresses are not regular memory

* |nstead, they correspond to registers in I/O devices

address
OxFFFFFFFF

OxFFFFOO00

R
_—
-
-

-
~~
~
~~
~~
~
~

cntrl reg.

data reg.

‘‘‘‘‘‘‘

< ¥ 3 %- 3= P-"9-"9-"9-

ELELlBIEIE BlElE|E

g) R A ca A N W
= % = B ¥ - % % % § R R

AAAAAAAAAAAA

"J_LlrllJJEi‘}
SLCI1R Ty

14

Processor-1/0O Speed Mismatch

1GHz microprocessor can execute 1B load or store
instructions per second, or 4,000,000 KB/s data rate

* |/O data rates range from 0.01 KB/s to 1,250,000 KB/s

Input: device may not be ready to send data as fast as
the processor loads it

* Also, might be waiting for human to act

Output: device not be ready to accept data as fast as
processor stores it

What to do?

15

Processor Checks Status before Acting

Path to a device generally has 2 registers:

* Control Register, says it’s OK to read/write (I/O ready) [think
of a flagman on a road]

e Data Register, contains data

Processor reads from Control Register in loop, waiting
for device to set Ready bit in Control reg
(0 =>1) to say it’s OK

Processor then loads from (input) or writes to (output)
data register

* Load from or Store into Data Register resets Ready bit
(1 => 0) of Control Register

This is called “Polling”

16

/O Example (polling)

* |nput: Read from keyboard into $v0

lui $t0, Oxffff H#E££££0000

Waitloop: lw $tl, 0($t0) #control
andi $tl1,S$tl,0x1
begq S$tl,$zero, Waitloop
lw Sv0, 4($t0) #data

e Qutput: Write to display from $a0

lui $t0, Oxffff #££££0000
Waitloop: lw $tl, 8($t0) #control

andi $tl1,$tl,0x1

beq Stl,$zero, Waitloop

SW Sa0, 12($t0) #data

“Ready” bit is from processor’s point of view!

17

Cost of Polling?

* Assume for a processor with a 1GHz clock it takes
400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning).
Determine % of processor time for polling

— Mouse: polled 30 times/sec so as not to miss user
movement

— Hard disk: assume transfers data in 16-Byte chunks and can
transfer at 16 MB/second. Again, no transfer can be

missed. (we’ll come up with a better way to do this)

% Processor time to poll

* Mouse Polling [clocks/sec]
=30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

* % Processor for polling:
12*103 [clocks/s] / 1¥107 [clocks/s] = 0.0012%
=> Polling mouse little impact on processor

19

Question

Hard disk: transfers data in 16-Byte chunks and can
transfer at 16 MB/second. No transfer can be missed.
What percentage of processor time is spent in polling
(assume 1GHz clock; 400 cycles per poll)?

A: 2%
* B: 4%
C: 20%
D: 40%
E: 80%

% Processor time to poll hard disk

* Frequency of Polling Disk
=16 [MB/s] / 16 [B/poll] = 1M [polls/s]
* Disk Polling, Clocks/sec

= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

* % Processor for polling:
400*106 [clocks/s] / 1*109 [clocks/s] = 40%

=> Unacceptable

(Polling is only part of the problem — main problem is that
accessing in small chunks is inefficient)

21

What is the alternative to polling?

Wasteful to have processor spend most of its time
“spin-waiting” for I/0 to be ready

Would like an unplanned procedure call that would
be invoked only when I/O device is ready

Solution: use exception mechanism to help
/0. Interrupt program when |I/O ready, return when
done with data transfer

Allow to register (post) interrupt handlers: functions
that are called when an interrupt is triggered

22

Interrupt-driven 1/0

' 1. Incoming interrupt suspends instruction stream
Handler Execution 2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU
Perform a jal to the handler (needs to store any state)
4. Handler run on current stack and returns on finish

w

Stack Frame

(thread doesn’t notice that a handler was run)

Stack Frame handler: lui $t0, Oxffff <
1w $tl, 0($t0)
andi $tl1,S$tl,0x1

1w Sv0, 4($t0)
sw $tl, 8($t0)
ret

Stack Frame

Label: sl1 $tl1,$s3,2
addu s$t1,S$tl,S$s5

lw $t1,0(S$tl) €— <
add $s1,$s1,$tl CPU Interrupt Table

addu $s3,$s3,S$s4
bne $s3,$s2,Label Interrupt(SPI10) > SPIO handler

23

Agenda

* OS Boot Sequence and Operation

24

What happens at boot?

* When the computer switches on, it does the same as
MARS: the CPU executes instructions from some

start address (stored in Flash ROM)

CPU

— | Memory mapped

0x2000:

1w $t0, 4($r0)

into it)

addi $t0, $zero,

0x1000

(Code to copy firmware into
regular memory and Jjump

PC = 0x2000 (some default value) — Address Space

* Bootstrapping:
https://en.wikipedia.org/wiki/Bootstrapping

25

What happens at boot?

* When the computer switches on, it does the same as
MARS: the CPU executes instructions from some
start address (stored in Flash ROM)

1. BIOS: Find a storage 4. Init: Ijaunch. an application
device and load first . that waits for input in loop

relu: <speedup>
pool: <speedup> x

sector (b|OCk of data Bl (e.g., TerminaI/Desktop/...

Which layer should we op

Diskette Drive B : None . s : which layer>
: LBA,ATA 100, 250GB Pa ort : . .
Slave Di : LBA,ATA 100, 250GB DDR : i 8 c-tiehive22 Linux x86.64
~/src/proj3/proj3_sta
answers.txt cnn cnnl cnn.py data LICENSE Makefil

. . . capability . cs6lc-tiGhive22 Linux x86_64
ri. Slave Disk HDD S.M.A.R.T. capability ... D ~/src/proj3/proj3_starter $ s src/

lelcome to the KNOPPIX live GNU/Linux on DUD?
cnn.c main.c python.c util.c
ting

Fun Vendor Devi Cl. csblc-tilhive2y

& : L sning Linux Kernel 2.6.24.4.
o 8086 1458 A0S mgi;f/"E:,J,?/f;"ﬁ‘fﬁ“;::;_‘ =D G 124132kB 118180KB
0 8086 26t 1458 2658
1 8086 1458 . & o f hde [QEMU CD-ROM1
2 8086 2650 1458 2650 USB 1.1 Host . /src/projasproji_starter Esilc tiehivez2 LinuX x36 64 Ing KNOPPIX DUD at ,deu/hdc...
2658 1458 2650 USB 1.1 Host - - Foul® pri KNOPPIX compressed image at /cdron/KNOPPIX/KNOPPIX
265C 1458 5006 USB 1.1 H Found additional KNOPPIX compressed image at /cdrom/KNOPPIX/KNOPPIXZ.
1458 2651 IDE Cntrlr srandisk shared memory
1458 66A SMBus Cntrlr N
"Jggg 3303 " ‘TUU;:;:';‘ 5 [>> Read-only DUD system successfully merged with read-write /ramdisk.
11AB 4320 1458 E000 Netuork Cntrlr
ACFL Controller INIT: version 2.86 booting
onfiguring for Linux Kernel 2.6.24.4.
roc 0 is Pentium 11 (Klamath) 1662MHz, 128 KB Cache
pnd[16081: apnd 3.2.1 interfacing with apn driver 1.16ac and APM BIOS 1.
RPN Bios found, power management functioms enabled.
ISB found, managed by udeu

Ubuntu 8.84, kernel 2.6.24-16-gene; suire found, managed by udeu
oo oa er S O re O n e Ubuntu 8.84, kernel 2.6.24-16-generic (recovery Mode) udev hot-plug hardware det
° 7 .) Ubuntu 8.84, Memtest86+ ‘toconfiguring devices. . .
)
disk): Load the OS kernel from
:

. B :) -

disk into a location in memory 3 0? 03"- |n|tla|lie

. . . o e o= b Telect ek Sty i ik ke services, darivers, etc.
and jump into it. & ,)

before booting, or 'c’ for a command-line.

UEFI
Unified Extensible Firmware Interface

7

e Successor of BIOS
* Much more powerful and complex

e E.g. graphics menu; networking;
browsers

e All modern Intel & AMD

based computer use UEFI

[Extensible Firmware Interface J

N~

27
Hardware

Launching Applications

Applications are called “processes” in most OSs.
Created by another process calling into an OS routine

(using a “syscall”, more details later).

— Depends on OS, but Linux uses fork to create a new
process, and execve to load application.

Loads executable file from disk (using the file system
service) and puts instructions & data into memory
(.text, .data sections), prepare stack and heap.

Set argc and argv, jump into the main function.

Supervisor Mode

* If something goes wrong in an application, it could
crash the entire machine. And what about malware,

etc.”?

 The OS may need to enforce resource constraints to
applications (e.g., access to devices).

* To help protect the OS from the application, CPUs have
a supervisor mode bit.

— A process can only access a subset of instructions and
(physical) memory when not in supervisor mode (user
mode).

— Process can change out of supervisor mode using a special
instruction, but not into it directly — only using an interrupt.

Syscalls

 What if we want to call into an OS routine? (e.g., to
read a file, launch a new process, send data, etc.)

— Need to perform a syscall: set up function arguments in
registers, and then raise software interrupt

— OS will perform the operation and return to user mode

* Also, OS uses interrupts for scheduling process
execution:
— OS sets scheduler timer interrupt then drops to user mode
and start executing a user task, when interrupts triggers,

switch into supervisor mode, select next task to execute (&
set timer) and drop back to user mode.

* This way, the OS can mediate access to all resources,
including devices and the CPU itself.

Agenda

* Multiprogramming/time-sharing

31

Multiprogramming

The OS runs multiple applications at the same time.
But not really (unless you have a core per process)

Switches between processes very quickly. This is
called a “context switch”.

When jumping into process, set timer interrupt.

— When it expires, store PC, registers, etc. (process state).
— Pick a different process to run and load its state.

— Set timer, change to user mode, jump to the new PC.

Deciding what process to run is called scheduling.

Protection, Translation, Paging

e Supervisor mode does not fully isolate applications
from each other or from the OS.
— Application could overwrite another application’s memory.
— Also, may want to address more memory than we actually

have (e.g., for sparse data structures).

e Solution: Virtual Memory. Gives each process the
illusion of a full memory address space that it has
completely for itself.

33

Agenda

* Introduction to Virtual Memory

34

“Bare” 5-Stage Pipeline

Physical Physical

Address | |nst. Decod Address | Data
'| Cache ecode ‘| Cache
Physical "| Memory Controller) Physical
Address Address

| Physical Address

Main Memory (DRAM)

* In a bare machine, the only kind of address is a
physical address

35

Dynamic Address Translation

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
=> base register — add offset to each address

Protection
Independent programs should not affect

each other inadvertently
=> bound register — check range of access

(Note: Multiprogramming drives requirement for

resident supervisor (OS) software to manage context

switches between multiple programs)

prog2

OS

Physical Memory

Simple Base and Bound Translation

SE— Segment Length

Bounds
> Violation?

Physical
Address

Logical
Address

Base Physical Address

Program
Address Space

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

37

Physical Memory

Base and Bound Machine

Bounds Violation? Bounds Violation?

Logical Logical

Address Address
Inst. Data
Cache Decode Cache
hysical A Physical A
Address Address
Physical Physical
Address Address
»| Memory Controller <

iPhysicaI Address

Main Memory (DRAM)

[Can /‘o[d addition of base register into (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers) |

38

Memory Fragmentation

Users 4 & 5 Users 2 & 5
0OS arrive leave
_Space > >

24K

r3 B user 3 &}\I\l\“&
- user 5 D

free

OS
Space

As users come and go, the storage is “fragmented”.

Therefore, at some stage programs have to be moved

around to compact the storage.

39

Paged Memory Systems

* Processor-generated address can be split into:

page number offset

* A page table contains the physical address of the base of each page

1
0 0 0
1 1
2 2
3 3 3
Address Space Page Table
of User-1 of User-1 2

Physical
Memory

Page tables make it possible to store the
pages of a program non-contiguously.

40

Private Address Space per User

User 1 _:> :.:*

Page Table

OS

pages

User 2 f////%/f%% <
%//////////% ‘\‘

Page Table

User 3

AN

Page Table

e Each user has a page table
e Page table contains an entry for each user page

Physical Memory

41

Where Should Page Tables Reside?

e Space required by the page tables (PT) is proportional
to the address space, number of users, ...

= Too large to keep in cpu registers

* |dea: Keep PTs in the main memory

— Needs one reference to retrieve the page base address and
another to access the data word

=> doubles the number of memory references!

42

Page Tables in Physical Memory

User 1 Virtual
Address Space

Physical Memory

__
i
.

User 2 Virtual

Address Space ////////////////

_

43

In Conclusion

* Once we have a basic machine, it’'s mostly up to the
OS to use it and define application interfaces.

 Hardware helps by providing the right abstractions
and features (e.g., Virtual Memory, 1/0).

