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So how is this any different?
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C Programs

Adding 1/0

MIPS Assembly int fib(int n) {

Project 2 S

-foo £ib (n-2) ;

1w $t0, 4($r0) }
addi $tl1, $t0, 3
beqg $tl1, $t2, foo

nop
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Raspberry Pi (< 300RMB on jd.com)
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It’s a real computer!




But wait...

* That’s not the same! When we run MARS, it only
executes one program and then stops.

* When | switch on my computer, | get this:
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Yes, but that’s just software! The Operating System (OS)



Well, “just software”

* The biggest piece of software on your machine?

* How many lines of code? These are guesstimates:

Mic

00000

soft Visual Studio 2012

US Army Future Combat System
fast battlefield network system (aborted)

Debian 5.0 codebase
free, oper em

Mac OS X * Tg

Codebases (in millions of lines of code). CC BY-NC 3.0 — David McCandless © 2013
http://www.informationisbeautiful.net/visualizations/million-lines-of-code/



What does the OS do?

One of the first things that runs when your computer
starts (right after firmware/ bootloader)

Loads, runs and manages programs:

— Multiple programs at the same time (time-sharing)

— Isolate programs from each other (isolation)

— Multiplex resources between applications (e.g., devices)

Services: File System, Network stack, etc.

Finds and controls all the devices in the machine in a
general way (using “device drivers”)



Agenda

Devices and I/O

OS Boot Sequence and Operation
Multiprogramming/time-sharing
Introduction to Virtual Memory
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* Devices and I/O

Agenda
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How to interact with devices?

 Assume a program running on a CPU. How does it
interact with the outside world?

* Need I/0 interface for Keyboards,
Network, Mouse, Screen, etc.

— Connect to many types of devices

— Control these devices, respond PCI Bus >
to them, and transfer data

— Present them to user < >
SCSI Bus
programs so | | l

they are useful < > -7 %@

Operating System

Mem

XS

&

cmd reg.
data reg.




Instruction Set Architecture for I/O

* What must the processor do for I/0?
— Input: reads a sequence of bytes
— Output: writes a sequence of bytes

* Some processors have special input and output
instructions

e Alternative model (used by MIPS):
— Use loads for input, stores for output (in small pieces)
— Called Memory Mapped Input/Output

— A portion of the address space dedicated to
communication paths to Input or Output devices (no
memory there)
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Memory Mapped I/0O

* Certain addresses are not regular memory

* |nstead, they correspond to registers in I/O devices
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Processor-1/0O Speed Mismatch

1GHz microprocessor can execute 1B load or store
instructions per second, or 4,000,000 KB/s data rate

* |/O data rates range from 0.01 KB/s to 1,250,000 KB/s

Input: device may not be ready to send data as fast as
the processor loads it

* Also, might be waiting for human to act

Output: device not be ready to accept data as fast as
processor stores it

What to do?
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Processor Checks Status before Acting

Path to a device generally has 2 registers:

* Control Register, says it’s OK to read/write (I/O ready) [think
of a flagman on a road]

e Data Register, contains data

Processor reads from Control Register in loop, waiting
for device to set Ready bit in Control reg
(0 =>1) to say it’s OK

Processor then loads from (input) or writes to (output)
data register

* Load from or Store into Data Register resets Ready bit
(1 => 0) of Control Register

This is called “Polling”
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/O Example (polling)

* |nput: Read from keyboard into $v0

lui $t0, Oxffff H#E££££0000

Waitloop: lw $tl, 0($t0) #control
andi $tl1,S$tl,0x1
begq S$tl,$zero, Waitloop
lw Sv0, 4($t0) #data

e Qutput: Write to display from $a0

lui $t0, Oxffff #££££0000
Waitloop: lw $tl, 8($t0) #control

andi $tl1,$tl,0x1

beq Stl,$zero, Waitloop

SW Sa0, 12($t0) #data

“Ready” bit is from processor’s point of view!
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Cost of Polling?

* Assume for a processor with a 1GHz clock it takes
400 clock cycles for a polling operation (call polling
routine, accessing the device, and returning).
Determine % of processor time for polling

— Mouse: polled 30 times/sec so as not to miss user
movement

— Hard disk: assume transfers data in 16-Byte chunks and can
transfer at 16 MB/second. Again, no transfer can be

missed. (we’ll come up with a better way to do this)



% Processor time to poll

* Mouse Polling [clocks/sec]
=30 [polls/s] * 400 [clocks/poll] = 12K [clocks/s]

* % Processor for polling:
12*103 [clocks/s] / 1¥107 [clocks/s] = 0.0012%
=> Polling mouse little impact on processor
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Question

Hard disk: transfers data in 16-Byte chunks and can
transfer at 16 MB/second. No transfer can be missed.
What percentage of processor time is spent in polling
(assume 1GHz clock; 400 cycles per poll)?

A: 2%
* B: 4%
C: 20%
D: 40%
E: 80%



% Processor time to poll hard disk

* Frequency of Polling Disk
=16 [MB/s] / 16 [B/poll] = 1M [polls/s]
* Disk Polling, Clocks/sec

= 1M [polls/s] * 400 [clocks/poll]
= 400M [clocks/s]

* % Processor for polling:
400*106 [clocks/s] / 1*109 [clocks/s] = 40%

=> Unacceptable

(Polling is only part of the problem — main problem is that
accessing in small chunks is inefficient)
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What is the alternative to polling?

Wasteful to have processor spend most of its time
“spin-waiting” for I/0 to be ready

Would like an unplanned procedure call that would
be invoked only when I/O device is ready

Solution: use exception mechanism to help
/0. Interrupt program when |I/O ready, return when
done with data transfer

Allow to register (post) interrupt handlers: functions
that are called when an interrupt is triggered
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Interrupt-driven 1/0

' 1. Incoming interrupt suspends instruction stream
Handler Execution 2. Looks up the vector (function address) of a handler in

an interrupt vector table stored within the CPU
Perform a jal to the handler (needs to store any state)
4. Handler run on current stack and returns on finish

w

Stack Frame

(thread doesn’t notice that a handler was run)

Stack Frame handler: lui $t0, Oxffff <
1w $tl, 0($t0)
andi $tl1,S$tl,0x1

1w Sv0, 4($t0)
sw $tl, 8($t0)
ret

Stack Frame

Label: sl1 $tl1,$s3,2
addu s$t1,S$tl,S$s5

lw  $t1,0(S$tl) €— <
add $s1,$s1,$tl CPU Interrupt Table

addu $s3,$s3,S$s4
bne $s3,$s2,Label Interrupt(SPI10) > SPIO handler
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Agenda

* OS Boot Sequence and Operation
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What happens at boot?

* When the computer switches on, it does the same as
MARS: the CPU executes instructions from some

start address (stored in Flash ROM)

CPU

— | Memory mapped

0x2000:

1w $t0, 4($r0)

into it)

addi $t0, $zero,

0x1000

(Code to copy firmware into
regular memory and Jjump

PC = 0x2000 (some default value) —  Address Space

* Bootstrapping:
https://en.wikipedia.org/wiki/Bootstrapping
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What happens at boot?

* When the computer switches on, it does the same as
MARS: the CPU executes instructions from some
start address (stored in Flash ROM)
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device and load first . that waits for input in loop
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UEFI
Unified Extensible Firmware Interface

7

e Successor of BIOS
* Much more powerful and complex

e E.g. graphics menu; networking;
browsers

e All modern Intel & AMD

based computer use UEFI

[ Extensible Firmware Interface J

N~

27
Hardware




Launching Applications

Applications are called “processes” in most OSs.
Created by another process calling into an OS routine

(using a “syscall”, more details later).

— Depends on OS, but Linux uses fork to create a new
process, and execve to load application.

Loads executable file from disk (using the file system
service) and puts instructions & data into memory
(.text, .data sections), prepare stack and heap.

Set argc and argv, jump into the main function.



Supervisor Mode

* If something goes wrong in an application, it could
crash the entire machine. And what about malware,

etc.”?

 The OS may need to enforce resource constraints to
applications (e.g., access to devices).

* To help protect the OS from the application, CPUs have
a supervisor mode bit.

— A process can only access a subset of instructions and
(physical) memory when not in supervisor mode (user
mode).

— Process can change out of supervisor mode using a special
instruction, but not into it directly — only using an interrupt.



Syscalls

 What if we want to call into an OS routine? (e.g., to
read a file, launch a new process, send data, etc.)

— Need to perform a syscall: set up function arguments in
registers, and then raise software interrupt

— OS will perform the operation and return to user mode

* Also, OS uses interrupts for scheduling process
execution:
— OS sets scheduler timer interrupt then drops to user mode
and start executing a user task, when interrupts triggers,

switch into supervisor mode, select next task to execute (&
set timer) and drop back to user mode.

* This way, the OS can mediate access to all resources,
including devices and the CPU itself.



Agenda

* Multiprogramming/time-sharing
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Multiprogramming

The OS runs multiple applications at the same time.
But not really (unless you have a core per process)

Switches between processes very quickly. This is
called a “context switch”.

When jumping into process, set timer interrupt.

— When it expires, store PC, registers, etc. (process state).
— Pick a different process to run and load its state.

— Set timer, change to user mode, jump to the new PC.

Deciding what process to run is called scheduling.



Protection, Translation, Paging

e Supervisor mode does not fully isolate applications
from each other or from the OS.
— Application could overwrite another application’s memory.
— Also, may want to address more memory than we actually

have (e.g., for sparse data structures).

e Solution: Virtual Memory. Gives each process the
illusion of a full memory address space that it has
completely for itself.
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Agenda

* Introduction to Virtual Memory
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“Bare” 5-Stage Pipeline

Physical Physical

Address | |nst. Decod Address | Data
'| Cache ecode ‘| Cache
Physical "| Memory Controller ) Physical
Address Address

| Physical Address

Main Memory (DRAM)

* In a bare machine, the only kind of address is a
physical address
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Dynamic Address Translation

Motivation
Multiprogramming, multitasking: Desire to
execute more than one process at a time (more
than one process can reside in main memory at
the same time).

Location-independent programs
Programming and storage management ease
=> base register — add offset to each address

Protection
Independent programs should not affect

each other inadvertently
=> bound register — check range of access

(Note: Multiprogramming drives requirement for

resident supervisor (OS) software to manage context

switches between multiple programs)

prog2

OS

Physical Memory



Simple Base and Bound Translation

SE— Segment Length

Bounds
> Violation?

Physical
Address

Logical
Address

Base Physical Address

Program
Address Space

Base and bounds registers are visible/accessible only
when processor is running in supervisor mode

37
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Base and Bound Machine

Bounds Violation? Bounds Violation?

Logical Logical

Address Address
Inst. Data
Cache Decode Cache
hysical A Physical A
Address Address
Physical Physical
Address Address
»| Memory Controller <

iPhysicaI Address

Main Memory (DRAM)

[ Can /‘o[d addition of base register into (register+immediate) address
calculation using a carry-save adder (sums three numbers with only a few
gate delays more than adding two numbers) |
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Memory Fragmentation

Users 4 & 5 Users 2 & 5
0OS arrive leave
_Space > >

24K

r3 B user 3 &}\I\l\“&
- user 5 D

free

OS
Space

As users come and go, the storage is “fragmented”.

Therefore, at some stage programs have to be moved

around to compact the storage.
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Paged Memory Systems

* Processor-generated address can be split into:

page number offset

* A page table contains the physical address of the base of each page

1
0 0 0
1 1
2 2
3 3 3
Address Space Page Table
of User-1 of User-1 2

Physical
Memory

Page tables make it possible to store the
pages of a program non-contiguously.
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Private Address Space per User

User 1 _:>  :.:*  

Page Table

OS

pages

User 2 f////%/f%% <
%//////////% ‘\‘

Page Table

User 3

AN

Page Table

e Each user has a page table
e Page table contains an entry for each user page

Physical Memory
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Where Should Page Tables Reside?

e Space required by the page tables (PT) is proportional
to the address space, number of users, ...

= Too large to keep in cpu registers

* |dea: Keep PTs in the main memory

— Needs one reference to retrieve the page base address and
another to access the data word

=> doubles the number of memory references!
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Page Tables in Physical Memory

User 1 Virtual
Address Space

Physical Memory

__
i
.

User 2 Virtual

Address Space ////////////////

_
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In Conclusion

* Once we have a basic machine, it’'s mostly up to the
OS to use it and define application interfaces.

 Hardware helps by providing the right abstractions
and features (e.g., Virtual Memory, 1/0).



