CS 110
Computer Architecture

Lecture 3: Introduction to C, Part Il

Instructor:
Soren Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

Agenda

* C Syntax
* Pointers

Agenda

* C Syntax

C Syntax : Control Flow (1/2)

Within a function, remarkably close to Java
constructs in terms of control flow
— 1f-else
* if (expression) statement
* if (expression) statementl
else statement2
—while
* while (expression)
statement
* do
statement
while (expression);

C Syntax : Control Flow (2/2)

— for
* for (initialize; check; update)
statement
—switch
* switch (expression) {
case constl: statements
case const2: statements
default: statements

}

* break

C Syntax: True or False

* What evaluates to FALSE in C?
— 0 (integer)
— NULL (a special kind of pointer: more on this later)
— No explicit Boolean type

e What evaluates to TRUE in C?

— Anything that isn’t false is true

— Same idea as in Python: only Os or empty
sequences are false, anything else is true!

C operators

arithmetic: +, -, *, /, % * subexpression

assighment: = grouping: ()

augmented assignment: ° order relations: <, <=, >,

+=, =, *=, [=, %=, &=, >=

|=, M=, <<=, >>= * increment and

vitwise logic: ~, &, |, decrement: ++ and --

vitwise shifts: <<, >> * member selection: ., ->

voolean logic: |, &&, || ¢ conditional evaluation:
PAE

equality testing: ==, I=

Agenda

* Pointers

Components of a Computer

Processor

Enable?
Read/Write

Program

Address

Write
Data

Read
Data

\ J

Processor-Memory Interface

\ J

|/O-Memory Interfaces
9

Address vs. Value

* Consider memory to be a single huge array
— Each cell of the array has an address associated
with it
— Each cell also stores some value

— For addresses do we use signed or unsigned
numbers? Negative address?!

* Don’t confuse the address referring to a
memory location with the value stored there

101 102 103 104 105 ...
23 42

Pointers

* An address refers to a particular memory
location; e.g., it points to a memory location

e Pointer: A variable that contains the address
of a variable

Location (address) /—\

101 102 103 104 105 ...

23 42 104

7 y i
name

Pointer Syntax

e int *x;
— Tells compiler that variable x is address of an int
* X = &Yy
— Tells compiler to assign address of y to x
— & called the “address operator” in this context
* Z = *X;
— Tells compiler to assign value at address in x to z
— * called the “dereference operator” in this context

12

Creating and Using Pointers

* How to create a pointer:
& operator: get address of a variable

int *p, x;

X 3;

p = &x;

P

P

P

? X ?
? X 3
X 3

e How get a value pointed to?
“*” (dereference operator): get the value that the pointer points to

Note the “*” gets used
2 different ways in this
example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

printf (“p points to value %d\n”,*p);

13

Using Pointer for Writes

* How to change a variable pointed to?

— Use the dereference operator * on left of
assignment operator =

3

5

T3
T3

Pointers and Parameter Passing

e C passes parameters “by value”

— Procedure/function/method gets a copy of the
parameter, so changing the copy cannot change the
original

void add one (int x) {
X = x + 1;
}

int y = 3;
add one(y);

y remains equal to 3

15

Pointers and Parameter Passing

* How can we get a function to change the value
held in a variable?

void add_one (1nt *p) {

}
int y = 3; What would you use in C++7?
add one(&y); Call by reference:
void add_one (int &p) {
y is now equal to 4 p=p+1;, //or p+=1;

}

16

Types of Pointers

* Pointers are used to point to any kind of data
(int, char, a struct, etc.)

* Normally a pointer only points to one type
(int, char, a struct, etc.).
— void * is a type that can point to anything
(generic pointer)
— Use void * sparingly to help avoid program bugs,
and security issues, and other bad things!

More C Pointer Dangers

* Declaring a pointer just allocates space to hold
the pointer — it does not allocate the thing
being pointed to!

* Local variables in C are not initialized, they
may contain anything (aka “garbage”)

 What does the following code do?

void £ ()

{
int *ptr;
*ptr = 5;

Pointers and Structures

typedef struct { /* dot notation */
int x; int h = pl.x;
int y; p2.y = pl.y;
} Point;
/* arrow notation */
Point pl; int h = paddr->x;
Point p2; int h = (*paddr) .x;

Point *paddr;
/* This works too */
pl = p2;

Note: C structure assignment is not a "deep copy”.
All members are copied, but not things pointed to
by members.

Pointers in C

* Why use pointers?

— If we want to pass a large struct or array, it’s easier /
faster / etc. to pass a pointer than the whole thing

— In general, pointers allow cleaner, more compact code

 So what are the drawbacks?

— Pointers are probably the single largest source of bugs
in C, so be careful anytime you deal with them

* Most problematic with dynamic memory management—
coming up next week

* Dangling references and memory leaks

Why Pointers in C?

At time C was invented (early 1970s), compilers
often didn’t produce efficient code

— Computers 25,000 times faster today, compilers better

C designed to let programmer say what they want
code to do without compiler getting in way

— Even give compilers hints which registers to use!

Today’s compilers produce much better code, so
may hot need to use pointers in application code

Low-level system code still needs low-level access
via pointers

Quiz: Pointers

void foo(int *x, int *y)
{ int t;
if (*x > *y) { t = *y; *y = *x; *x
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);

printf("a=%d b=%d c=%d\n", a, b, c);
A:a=3 b=2 c=1
B:a=1 b=2 c¢=3

Resultis: C:a=1 b=3 c=2
D:a=3 b=3 c¢c=3
E:a=1 b=1 c=1

Administrivia

* OH started — use when you need help!

— Info on piazza!

e HW 2 will be posted today — 2 weeks time — start
early!

— Autolab will open this week (we hope).

* Add/ drop period: Finalize course choice by

March 15t => Finalize partner (lab & project) in
lab 2!

iPhone X Teardown
ifixit.com

Get logic board out

e
E -
= O
o 2
- =2

s
L — s
T 2
\‘,u:)
= £
w S

) =

ProviderOnIy

AuthorizedSer

25

* Apple 64bit System on a chip (SoC); A11:

8000600
| o el
Py L L L XL

Hexa core (2 high performance (up to 2.39 GHz), 4 low power)
Apple designed GPU

Motion Processor; Image Processor; Neural Engine

3 GB LPDDR4X (memory)

L1 cache: 32 KB instruction, 32 KB data

L2 cache: 8 MB;

L3 cache : yes, size unknown

¢ , B903303000090030030000000004
1:l..lU...Ol.‘....i.‘.‘.l.l& .

\ ..l ol Eg ° o i
‘co' k‘l & -
LX) . L 4 ad o4

LLLLILLJ) e T T e °.

oo.ooid—ooooooooooo'oooooo‘ooooooooooo

©

ot £, y = ‘E

- 1] =" A ¥

1 i g 3

A 5 1

H 8 >

o 2

®

] 2 =

) »

L > . _ b

o) Gl 4TS) € g g 5= ===

26

¢ 22030000000000000800000000¢
C PO0000RIBNVO0RRIIINGERBDGD 5 2 9]
. ()
ooooaoﬁi ‘o.'a
o,880080 00000008 BE 4 5]
 JILIIaLLILLL) m ol A AL WL A g

eOo0e
JLolece

oo OOO
-

©

it 2. B
- = - pr!
. £} 3
R . ___ |
. - <

e,
w g
- 7

| ¥y
Y ~ B 1y

......

’ooooo6—0ooooooooo‘o'oo“oooooooooo'oooo’.

Apple 338500341-B1 power management IC
TI 78AVZ81 battery charger

NXP 1612A1—Likely aniteration of the 1610
tristar IC

Apple 338500248 audio codec
STB600BO

Apple 338500306 power management IC

e N
’

27

e Apple/Murata USI 170821 339500397 WiFi/
Bluetooth module

® Qualcomm WTR5975 gigabit LTE transceiver.

!;':i' LA ‘

i
Ak S
?‘E;.:.!.E

734
KM

Qualcomm MDM®9655 Snapdragon X16 LTE
modem and PMD9%655 PMIC. But Apple is dual-
sourcing the modem, and Techlnsights found an
Intel XMM7480 (PMB9948) in their A1901
model. Even though the modem is capable of it,
Apple isn’t supporting Gigabit speeds with the
Qualcomm part.

e Skyworks 78140-22 power amplifier,
SKY77366-17 power amplifier, S770 6662,
37605418 1736

® Broadcom BCM59355 wireless charging
controller

e NXP80V18 PN80OV NFC controller module

® Broadcom AFEM-8072, MMMB power amplifier
module

R T

® Toshiba TSB3234X68354TWNA1 64 GB
flash memory

e Apple/Cirrus Logic 338500296 audio
amplifier

29

C Arrays

 Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};

declares and initializes a 2-element integer array

C Strings

e String in Cis just an array of characters
char string[] = "abec";

* How do you tell how long a string is?

— Last character is followed by a 0 byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] '= 0) n++;
return n;

Array Name / Pointer Duality

* Key Concept: Array variable is a “pointer” to the first
(0th) element

* So, array variables almost identical to pointers

— char *stringandchar string][] are nearly
identical declarations

— Differ in subtle ways: incrementing, declaration of filled
arrays

* Consequences:
— ar is an array variable, but works like a pointer
— ar[0] is the same as *ar
— ar[2] isthe same as * (ar+2)
— Can use pointer arithmetic to conveniently access arrays

Changing a Pointer Argument?

 What if want function to change a pointer?

 What gets printed?

void inc_ptr(int *p)
{ p= p+1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

A.q.*
[l

g9

50

50

60

70

Pointer to a Pointer

e Solution! Pass a pointer to a pointer, declared

as **h

* Now what gets printed?

void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;

inc_ptr(&q);

printf(“*q = %d\n”, *q);

*q = 60
Ad 9
L
50 | 60 | 70

C Arrays are Very Primitive

 An array in C does not know its own length,
and its bounds are not checked!

— Consequence: We can accidentally access off the
end of an array

— Consequence: We must pass the array and its size
to any procedure that is going to manipulate it
* Segmentation faults and bus errors:

— These are VERY difficult to find;
be careful!

Use Defined Constants

* Array size n; want to access from 0 to n-1, so you should use

counter AND utilize a variable for declaration & incrementation
— Bad pattern

int i, ar[10];

for(i1i = 0; 1 < 10; 1+4+){ ... }
— Better pattern

const int ARRAY SIZE = 10;

int i, a[ARRAY SIZE];

for(i = 0; i < ARRAY SIZE; i++){ ... }

* SINGLE SOURCE OF TRUTH

— You're utilizing indirection and avoiding maintaining two copies of the
number 10

— DRY: “Don’t Repeat Yourself”

37

Pointing to Different Size Objects

* Modern machines are “byte-addressable”

— Hardware’s memory composed of 8-bit storage cells, each has a
unique address

* A Cpointer is just abstracted memory address

* Type declaration tells compiler how many bytes to fetch on
each access through pointer
— E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

short *y int *x char *z

59 58 57 56455 54 53 52 51 50 49 4847 46 45 44 43/42 Byte address

l—'—’ \ | L'J
' .
16-bit short stored 32-bit integer 8-bit character

in two bytes stored in four bytes stored in one byte
38

sizeof() operator

sizeof(type) returns number of bytes in object

— But number of bits in a byte is not standardized

* |In olden times, when dragons roamed the earth, bytes
could be 5, 6, 7, 9 bits long

By definition, sizeof(char)==1
Can take sizeof(arr), or sizeof(structtype)

We’ll see more of sizeof when we look at
dynamic memory management

Pointer Arithmetic

pointer + number pointer — number
e.g., pointer+ 1 adds 1 something to a pointer

char *p; int *p;
char a int a
char b; int b;
p = &a; In each, p now pointsto b p = &a;
P += 1; <«1— (Assuming compiler doesn’t —TP += 1;

reorder variables in memory.
Never code like this!!!!)

Adds 1*sizeof (char) Adds 1*sizeof (int)
to the memory address to the memory address

Pointer arithmetic should be used cautiously

Arrays and Pointers

Passing arrays:

Must explicitl
Really int *array pass thepsizey

* Array =~ pointer to the initial (Oth) array int A
element foo(int array][], f//
unsigned int size)

a[i] = * (a+i) (

.. array[size - 1] ..

* An array is passed to a function as a pointer

— The array size is lost! int
main (void)

{
* Usually bad style to interchange arrays and int a[10], b[5];
pointers .. foo(a, 10).. foo(b, 5) ..

— Avoid pointer arithmetic! }

41

Arrays and Pointers

int
foo(int array][],

unsigned int size)

R o
. What does this print (32bit)? 4

printf (“%d\n”, sizeof (array)); * _
y ... because array is really

a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

int
main (void)
{
int a[10], b[5];

. foo(a, 10).. foo(b, 5) .. | What does this print (32bit)? 40
printf (“%d\n”, sizeof(a)); « |

42

Arrays and Pointers

int 1i; int *p;

int array[10]; int array[10];

for (i = 0; i < 10; i++) for p < &array[10]
{ {

arrayl[i] = ..;
}

}

These code sequences have the same effect!

43

Quiz:
int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p;
(*pp)++;
(*(*pp)) ++;
printf ("%d\n", *p);

Result is:
A: 2

B:
C:
D:
E:

Z U0 P W

one of the above

C Strings

e String in Cis just an array of characters
char string[] = "abec";

* How do you tell how long a string is?

— Last character is followed by a 0 byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] '= 0) n++;
return n;

Concise strlen()

int strlen (char *s)
{
char *p = s;
while (*p++)
; /* Null body of while */

return (p — s - 1);

What happens if there is no zero character
at end of string?

46

Point past end of array?

* Array size n; want to access from 0 to n-1, but
test for exit by comparing to address one
element past the array

int ar[10], *p, *gq, sum = 0;

p = &r[0];, g = &ar[10];
while (p '= q)

/* sum = sum + *p; p=p + 1; */
sum += *p++;

— Is this legal?

* Cdefines that one element past end of array
must be a valid address, i.e., not cause an error

