
CS	110
Computer	Architecture	

Lecture	3:	Introduction	to	C,	Part	II

Instructor:
Sören	Schwertfeger

http://shtech.org/courses/ca/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• C	Syntax
• Pointers

2

Agenda

• C	Syntax
• Pointers

3

C	Syntax	:	Control	Flow	(1/2)

• Within	a	function,	remarkably	close	to	Java	
constructs	in	terms	of	control	flow
– if-else

• if (expression) statement
• if (expression) statement1
else statement2

– while
• while (expression)

statement
• do

statement
while (expression);

4

C	Syntax	:	Control	Flow	(2/2)

– for
• for (initialize; check; update)
statement

– switch
• switch (expression){

case const1: statements
case const2: statements
default: statements

}
• break

5

C	Syntax:	True	or	False

• What	evaluates	to	FALSE	in	C?
– 0	(integer)
– NULL	(a	special	kind	of	pointer:	more	on	this	later)
– No	explicit	Boolean	type

• What	evaluates	to	TRUE	in	C?
– Anything	that	isn’t	false	is	true
– Same	idea	as	in	Python:	only	0s	or	empty	
sequences	are	false,		anything	else	is	true!

6

C	operators

• arithmetic:	+,	-,	*,	/,	%
• assignment:	=
• augmented	assignment:	
+=,	-=,	*=,	/=,	%=,	&=,	
|=,	^=,	<<=,	>>=

• bitwise	logic:	~,	&,	|,	^
• bitwise	shifts:	<<,	>>
• boolean logic:	!,	&&,	||
• equality	testing:	==,	!=

• subexpression
grouping:	()

• order	relations:	<,	<=,	>,	
>=

• increment	and	
decrement:	++	and	--

• member	selection:	.,	->
• conditional	evaluation:	
?	:

7

Agenda

• C	Syntax
• Pointers

8

Processor

Control

Datapath

Components	of	a	Computer

9

PC

Registers

Arithmetic	&	Logic	Unit
(ALU)

Memory
Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

Address	vs.	Value
• Consider	memory	to	be	a	single	huge	array
– Each	cell	of	the	array	has	an	address	associated	
with	it

– Each	cell	also	stores	some	value
– For	addresses	do	we	use	signed	or	unsigned	
numbers?	Negative	address?!

• Don’t	confuse	the	address	referring	to	a	
memory	location	with	the	value	stored	there

10

23 42 101 102	103	104	105	...

Pointers
• An	address	refers	to	a	particular	memory	
location;	e.g.,	it	points	to	a	memory	location

• Pointer:	A	variable	that	contains	the	address	
of	a	variable

11

23 42 101	102	103	104	105	...

x y

Location	(address)

name
p

104

Pointer	Syntax

• int *x;
– Tells	compiler	that	variable	x is	address	of	an	int

• x = &y;
– Tells	compiler	to	assign	address	of	y to	x
– & called	the	“address	operator”	in	this	context

• z = *x;
– Tells	compiler	to	assign	value	at	address	in	x to	z
– * called	the	“dereference	operator”	in	this	context

12

Creating	and	Using	Pointers

13

• How	to	create	a	pointer:
& operator:	get	address	of	a	variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

•How	get	a	value	pointed	to?
“*” (dereference	operator):	get the	value	that	the	pointer	points	to

printf(“p points to value %d\n”,*p);

Note	the	“*”	gets	used	
2	different	ways	in	this	
example.		In	the		
declaration	to	indicate	
that	p is	going	to	be	a	
pointer,		and	in	the	
printf to	get	the	
value	pointed	to	by	p.

Using	Pointer	for	Writes

• How	to	change	a	variable	pointed	to?
– Use	the	dereference	operator	* on	left	of	
assignment	operator	=

14

p x 5*p = 5;

p x 3

Pointers	and	Parameter	Passing

• C	passes	parameters	“by	value”
– Procedure/function/method	gets	a	copy	of	the	
parameter,	so	changing	the	copy	cannot	change	the	
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains	equal	to	3

15

Pointers	and	Parameter	Passing

• How	can	we	get	a	function	to	change	the	value	
held	in	a	variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is	now	equal	to	4

16

What	would	you	use	in	C++?

Call	by	reference:
void	add_one (int &p)	{
p	=	p	+	1;				//	or		p	+=	1;

}

Types	of	Pointers

• Pointers	are	used	to	point	to	any	kind	of	data	
(int,	char,	a	struct,	etc.)

• Normally	a	pointer	only	points	to	one	type	
(int,	char,	a	struct,	etc.).
– void * is	a	type	that	can	point	to	anything	
(generic	pointer)

– Use	void * sparingly	to	help	avoid	program	bugs,	
and	security	issues,	and	other	bad	things!

17

More	C	Pointer	Dangers
• Declaring	a	pointer	just	allocates	space	to	hold	
the	pointer	– it	does	not	allocate	the	thing	
being	pointed	to!

• Local	variables	in	C	are	not	initialized,	they	
may	contain	anything	(aka	“garbage”)

• What	does	the	following	code	do?

18

void f()
{

int *ptr;
*ptr = 5;

}

Pointers	and	Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr).x;

/* This works too */
p1 = p2;

19

Note:	C	structure	assignment	is	not	a	”deep	copy”.
All	members	are	copied,	but	not	things	pointed	to	
by	members.

Pointers	in	C
• Why	use	pointers?
– If	we	want	to	pass	a	large	struct or	array,	it’s	easier	/	
faster	/	etc.	to	pass	a	pointer	than	the	whole	thing

– In	general,	pointers	allow	cleaner,	more	compact	code

• So	what	are	the	drawbacks?
– Pointers	are	probably	the	single	largest	source	of	bugs	
in	C,	so	be	careful	anytime	you	deal	with	them
• Most	problematic	with	dynamic	memory	management—
coming	up	next	week

• Dangling	references	and	memory	leaks

20

Why	Pointers	in	C?

• At	time	C	was	invented	(early	1970s),	compilers	
often	didn’t	produce	efficient	code
– Computers	25,000	times	faster	today,	compilers	better

• C	designed	to	let	programmer	say	what	they	want	
code	to	do	without	compiler	getting	in	way
– Even	give	compilers	hints	which	registers	to	use!

• Today’s	compilers	produce	much	better	code,	so	
may	not	need	to	use	pointers	in	application	code

• Low-level	system	code	still	needs	low-level	access	
via	pointers

21

Quiz:	Pointers
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

22

A:	a=3 b=2 c=1
B:	a=1 b=2 c=3
C:	a=1 b=3 c=2
D:	a=3 b=3 c=3
E:	a=1 b=1 c=1

Result	is:

Administrivia
• OH	started	– use	when	you	need	help!
– Info	on	piazza!

• HW	2	will	be	posted	today	– 2	weeks	time	– start	
early!	
– Autolab will	open	this	week	(we	hope).

• Add/	drop	period:	Finalize	course	choice	by	
March	1st =>	Finalize	partner	(lab	&	project)	in	
lab	2!

23

iPhone	X	Teardown
ifixit.com

24

Get	logic	board	out

25

• Apple	64bit	System	on	a	chip	(SoC);	A11:	
– Hexa core	(2	high	performance	(up	to	2.39	GHz),	4	low	power)
– Apple	designed	GPU
– Motion	Processor;	Image	Processor;	Neural	Engine
– 3 GB	LPDDR4X	(memory)
– L1	cache:	32	KB	instruction,	32	KB	data
– L2	cache:	8	MB;	
– L3	cache	:	yes,	size	unknown

26

27

28

29

30

C	Arrays

• Declaration:
int ar[2];

declares	a	2-element	integer	array:	just	a	block	of	
memory	

int ar[] = {795, 635};

declares	and	initializes	a	2-element	integer	array

31

C	Strings
• String	in	C	is	just	an	array	of	characters

char string[] = "abc";

• How	do	you	tell	how	long	a	string	is?
– Last	character	is	followed	by	a	0	byte	
(aka	“null	terminator”)

32

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array	Name	/	Pointer	Duality
• Key	Concept:	Array	variable	is	a	“pointer”	to	the	first	
(0th)	element

• So,	array	variables	almost	identical	to	pointers
– char *string and	char string[] are	nearly	
identical	declarations

– Differ	in	subtle	ways:	incrementing,	declaration	of	filled	
arrays

• Consequences:
– ar is	an	array	variable,	but	works	like	a	pointer
– ar[0] is	the	same	as	*ar
– ar[2] is	the	same	as	*(ar+2)
– Can	use	pointer	arithmetic	to	conveniently	access	arrays

33

Changing	a	Pointer	Argument?

• What	if	want	function	to	change	a	pointer?
• What	gets	printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

Pointer	to	a	Pointer

• Solution!	Pass	a	pointer	to	a	pointer,	declared	
as	**h

• Now	what	gets	printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

C	Arrays	are	Very	Primitive
• An	array	in	C	does	not	know	its	own	length,	
and	its	bounds	are	not	checked!
– Consequence:	We	can	accidentally	access	off	the	
end	of	an	array

– Consequence:	We	must	pass	the	array	and	its	size	
to	any	procedure	that	is	going	to	manipulate	it

• Segmentation	faults	and	bus	errors:
– These	are	VERY	difficult	to	find;	
be	careful!	

36

Use	Defined	Constants
• Array	size	n;	want	to	access	from	0 to	n-1,	so	you	should	use	

counter	AND	utilize	a	variable	for	declaration	&	incrementation
– Bad	pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better	pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE	SOURCE	OF	TRUTH
– You’re	utilizing	indirection	and	avoiding	maintaining	two	copies	of	the	

number	10
– DRY:	“Don’t	Repeat	Yourself”

37

Pointing	to	Different	Size	Objects
• Modern	machines	are	“byte-addressable”

– Hardware’s	memory	composed	of	8-bit	storage	cells,	each	has	a	
unique	address

• A	C	pointer	is	just	abstracted	memory	address
• Type	declaration	tells	compiler	how	many	bytes	to	fetch	on	
each	access	through	pointer
– E.g.,	32-bit	integer	stored	in	4	consecutive	8-bit	bytes

38

424344454647484950515253545556575859

int *x

32-bit	integer	
stored	in	four	bytes

short *y

16-bit	short	stored	
in	two	bytes

char *z

8-bit	character	
stored	in	one	byte

Byte	address

sizeof()	operator

• sizeof(type)	returns	number	of	bytes	in	object
– But	number	of	bits	in	a	byte	is	not	standardized
• In	olden	times,	when	dragons	roamed	the	earth,	bytes	
could	be	5,	6,	7,	9	bits	long

• By	definition,	sizeof(char)==1
• Can	take	sizeof(arr),	or	sizeof(structtype)
• We’ll	see	more	of	sizeof when	we	look	at	
dynamic	memory	management

39

40

Pointer	Arithmetic
pointer +	number pointer – number
e.g.,	pointer + 1 adds	1	something to	a	pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In	each,	p now	points	to	b
(Assuming	compiler	doesn’t	
reorder	variables	in	memory.	

Never	code	like	this!!!!)

Adds	1*sizeof(char)
to	the	memory	address

Adds	1*sizeof(int)
to	the	memory	address

Pointer	arithmetic	should	be	used	cautiously

41

Arrays	and	Pointers

• Array	» pointer	to	the	initial	(0th)	array
element

a[i] º *(a+i)

• An	array	is	passed	to	a	function	as	a	pointer
– The	array	size	is	lost!

• Usually	bad	style	to	interchange	arrays	and
pointers
– Avoid	pointer	arithmetic!

Really int *array

int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays:

42

Arrays	and	Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What	does	this	print	(32bit)?

What	does	this	print	(32bit)?

4

40

...	because	array is	really
a	pointer	(and	a	pointer	is	
architecture	dependent,	but		
likely	to	be	8	on	modern
machines!)

43

Arrays	and	Pointers

int i;
int array[10];

for (i = 0; i < 10; i++)
{

array[i] = …;
}

int *p;
int array[10];

for (p = array; p < &array[10]; p++)
{

*p = …;
}

These	code	sequences	have	the	same	effect!

Quiz:
int x[] = { 2, 4, 6, 8, 10 };
int *p = x;
int **pp = &p;
(*pp)++;
(*(*pp))++;
printf("%d\n", *p);

44

Result	is:
A:	2
B:	3
C:	4
D:	5
E:	None	of	the	above

C	Strings
• String	in	C	is	just	an	array	of	characters

char string[] = "abc";

• How	do	you	tell	how	long	a	string	is?
– Last	character	is	followed	by	a	0	byte	
(aka	“null	terminator”)

45

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Concise	strlen()
int strlen(char *s)
{

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

What	happens	if	there	is	no	zero	character	
at	end	of	string?

46

Point	past	end	of	array?

• Array	size	n;	want	to	access	from	0 to	n-1,	but	
test	for	exit	by	comparing	to	address	one	
element	past	the	array
int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;
– Is	this	legal?
• C	defines	that	one	element	past	end	of	array	
must	be	a	valid	address,	i.e.,	not	cause	an	error

