
CS	110
Computer	Architecture	

Pipelining	

Instructor:
Sören	Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

Agenda

• Pipelining
• Hazards

– Structural
– Data

• R-type	instructions
• Load

– Control

• Instruction-Level	Parallelism

2

Complete	Single-Cycle	RV32I	
Datapath!

+4
Add

addr
inst

IMEM

pc+4

pc+4

wb

pcwb

Inst[24:20] ALU
+

clk

Reg []

Inst[19:15]

Inst[11:7]

AddrB

AddrA DataA

DataB

AddrD

DataD

alu

Reg[rs1]

Reg[rs2]

Inst[31:0]

Control logic

RegWEn ALUSel
Asel

MemRW

0

1

Imm[31:0]
Imm.
Gen

Add

clk

addr
inst

IMEM DMEM

addr
DataR

DataW

PC

Inst
[31:7]

1

0

2

clk

WBSel

Branch
Comp

1

0

ImmSel

1

0

PCSel BrUn

BrEq

BrLT

Control logic

Bsel

mem

alu
alu

3

Stages	of	Execution	on	Datapath

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1.	Instruction
Fetch

2.	Decode/
Register
Read

3.	Execute 4.	Memory 5.	Register
Write

PC

4

Single	Cycle	Performance
• Assume	time	for actions	are

– 100ps	for	register	read	or	write;	200ps	for	other events

• Clock	period	is?	
Instr Instr fetch Register

read
ALU op Memory

access
Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

• Clock rate (cycles/second = Hz) = 1/Period (seconds/cycle)

5

Single	Cycle	Performance
• Assume	time	for actions	are

– 100ps	for	register	read	or	write;	200ps	for	other events

• Clock	period	is?
Instr Instr fetch Register

read
ALU op Memory

access
Register
write

Total time

lw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100 ps 200ps 200ps 700ps

R-format 200ps 100 ps 200ps 100 ps 600ps

beq 200ps 100 ps 200ps 500ps

• What can we do to improve clock rate?
• Will this improve performance as well?

Want increased clock rate to mean faster programs
6

Gotta	Do	Laundry
• Students	阿安 (A	An)，鲍伯 (Bao Bo),
陈晨 (Chen	Chen)	and	丁丁 (Ding	
Ding)	each	have	one	load	of	clothes	
to	wash,	dry,	fold,	and	put	away
– Washer	takes	30	minutes

– Dryer	takes	30	minutes

– “Folder”	takes	30	minutes

– “Stasher”	takes	30	minutes	to	put	
clothes	into	drawers

A B C D

7

Sequential	Laundry

• Sequential	laundry	takes	
8	hours	for	4	loads

T
a
s
k

O
r
d
e
r

B

C
D

A
30
Time

30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

8

Pipelined	Laundry

• Pipelined	laundry	takes	
3.5	hours	for	4	loads!	

T
a
s
k

O
r
d
e
r

B
C

D

A

12 2 AM6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30

9

• Pipelining	doesn’t	help	latency
of	single	task,	it	helps	
throughput of	entire	workload

• Multiple tasks	operating	
simultaneously	using	different	
resources

• Potential	speedup	=	Number	
pipe	stages

• Time	to	“fill”	pipeline	and	time	
to	“drain”	it	reduces	speedup

Pipelining	Lessons	(1/2)

10

6 PM 7 8 9
Time

B
C

D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

• Suppose	new	Dryer	
takes	20	minutes,	new	
Folder	takes	20	
minutes.	How	much	
faster	is	pipeline?

• Pipeline	rate	limited	by	
slowest pipeline	stage

• Unbalanced	lengths	of	
pipe	stages	reduces	
speedup

6 PM 7 8 9
Time

B
C

D

A
3030 30 3030 30 30

T
a
s
k

O
r
d
e
r

Pipelining	Lessons	(2/2)

11

PC

in
st

ru
ct

io
n

m
em

or
y

+4

rt
rs
rd

re
gi

st
er

s

ALU

D
at

a
m

em
or

y

imm

1. Instruction
Fetch

2. Decode/
Register Read

3. Execute 4. Memory 5. Write
Back

Single	Cycle	Datapath

12

Pipelining	with	RISC-V

13

Phase Pictogram tstep Serial

Instruction Fetch 200 ps

Reg Read 100	ps

ALU 200	ps

Memory 200	ps

Register	Write 100	ps

tinstruction 800	ps

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3
tcycle

instruction sequence

tinstruction

tcycle Pipelined

200 ps

200	ps

200	ps

200	ps

200	ps

1000	ps

Pipelining	with	RISC-V

14

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3
tcycle

instruction sequence

tinstruction

Single Cycle Pipelining

Timing tstep =	100	…	200	ps tcycle =	200	ps

Register access	only	100	ps All	cycles	same	length

Instruction time,	tinstruction =	tcycle =	800	ps 1000	ps

CPI	(Cycles	Per	Instruction) ~1	(ideal) ~1	(ideal),	>1	(actual)

Clock	rate,	fs 1/800	ps =	1.25	GHz 1/200 ps =	5	GHz

Relative	speed 1	x 4	x

Sequential	vs	Simultaneous

add t0, t1, t2

or t3, t4, t5

sll t6, t0, t3

tcycle
= 200 ps

instruction sequence

tinstruction = 1000 ps

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

What happens sequentially, what happens simultaneously?

15

RISC-V	Pipeline

add t0, t1, t2

or t3, t4, t5

slt t6, t0, t3

tcycle
= 200 ps

instruction sequence

tinstruction = 1000 ps

sw t0, 4(t3)

lw t0, 8(t3)

addi t2, t2, 1

Resource use of
instruction over
time

Resource use in a
particular time slot

16

Single-Cycle	RISC-V	RV32I	Datapath

17

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

0
1
21

0 pc
0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

mem

wb
alu

pc+4

Reg[rs1
]

pc

imm[31:0]

Reg[rs2]

inst[31:0] ImmSel RegWEn BrUnBrEqBrLT ASelBSel ALUSel MemRW WBSelPCSel

wb

Pipelining	RISC-V	RV32I	Datapath

18

IMEM
ALU

Imm.
Gen

+4

DMEM
Branch
Comp.

Reg[]

AddrA
AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

0
1
21

0 pc
0
1

inst[11:7]

inst[19:15]
inst[24:20]

inst[31:7]

pc+4
alu

mem

wb
alu

pc+4

Reg[rs1
]

pc

imm[31:0]

Reg[rs2]

wb

Instruction Fetch
(F)

Instruction
Decode/Register Read

(D)

ALU Execute
(X)

Memory Access
(M)

Write Back
(W)

Pipelined	RISC-V	RV32I	Datapath

19

IMEM

ALU
+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

Must pipeline instruction along
with data, so control operates
correctly in each stage

Recalculate PC+4 in M
stage to avoid sending both
PC and PC+4 down pipeline

Each	stage	operates	on	different	instruction

20

IMEM

ALU
+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

add
t0, t1,
t2

or t3, t4, t5slt t6, t0, t3sw t0, 4(t3)lw t0, 8(t3)

Pipeline registers separate stages, hold data for each instruction in flight

Pipelined	Control
• Control	signals	derived	from	instruction

– As	in	single-cycle	implementation
– Information	is	stored	in	pipeline	registers	for	use	by	later	stages

21

Question
Logic	in	some	stages	takes	200ps	and	in	some	
100ps.	Clk-Q	delay	is	30ps	and	setup-time	is	
20ps.	What	is	the	maximum	clock	frequency	at	
which	a	pipelined	design	with	5	stages	can	
operate?
• A:	10GHz
• B:	5GHz
• C:	6.7GHz
• D:	4.35GHz
• E:	4GHz

22

Agenda

• Pipelining
• Hazards

– Structural
– Data

• R-type	instructions
• Load

– Control

• Instruction-Level	Parallelism

23

Pipelining	Hazards
A	hazard is	a	situation	that	prevents	starting	the	
next	instruction	in	the	next	clock	cycle

1) Structural	hazard
– A	required	resource	is	busy
(e.g.	needed	in	multiple	stages)

2) Data	hazard
– Data	dependency	between	instructions
– Need	to	wait	for	previous	instruction	to	complete	its	

data	read/write
3) Control	hazard

– Flow	of	execution	depends	on	previous	instruction

24

Structural	Hazard

• Problem:		Two	or	more	instructions	in	the	
pipeline	compete	for	access	to	a	single	
physical	resource

• Solution	1:	Instructions	take	it	in	turns	to	use	
resource,	some	instructions	have	to	stall

• Solution	2:	Add	more	hardware	to	machine
• Can	always	solve	a	structural	hazard	by	adding	
more	hardware

25

Regfile Structural	Hazards

• Each	instruction:
– can	read	up	to	two	operands	in	decode	stage
– can	write	one	value	in	writeback stage

• Avoid	structural	hazard	by	having	separate	
“ports”
– two	independent	read	ports	and	one	independent	
write	port

• Three	accesses	per	cycle	can	happen	
simultaneously

26

Structural	Hazard:	Memory	Access

add t0, t1, t2

or t3, t4, t5

slt t6, t0, t3

instruction sequence

sw t0, 4(t3)

lw t0, 8(t3)

• Instruction and data
memory used
simultaneously

ü Use two separate
memories

27

Instruction	and	Data	Caches

28

Processor

Control

Datapath
PC

Registers
Arithmetic & Logic Unit

(ALU)

Memory	(DRAM)

Bytes

Data

Program
Instruction	
Cache

Data
Cache

Structural	Hazards	– Summary

• Conflict	for	use	of	a	resource
• In	RISC-V	pipeline	with	a	single	memory

– Load/store	requires	data	access
– Without	separate	memories,	instruction	fetch	would	have	to	stall for	that	

cycle
• All	other	operations	in	pipeline	would	have	to	wait

• Pipelined	datapaths require	separate	instruction/data	memories
– Or	separate	instruction/data	caches

• RISC	ISAs	(including	RISC-V)	designed	to	avoid	structural	hazards
– e.g.	at	most	one	memory	access/instruction

29

Question
Which	statement	is	false?
• A:	Pipelining	increases	instruction	throughput
• B:	Pipelining	increases	instruction	latency
• C:	Pipelining	increases	clock	frequency
• D:	Pipelining	decreases	number	of	components

30

Agenda

• Pipelining
• Hazards

– Structural
– Data

• R-type	instructions
• Load

– Control

• Instruction-Level	Parallelism

31

Data	Hazard:	Register	Access

add t0, t1, t2

or t3, t4, t5

slt t6, t0, t3

instruction sequence

sw t0, 4(t3)

lw t0, 8(t3)

• Separate ports, but what if write to same value as read?
• Does sw in the example fetch the old or new value?

32

Register	Access	Policy

add t0, t1, t2

or t3, t4, t5

slt t6, t0, t3

instruction sequence sw t0, 4(t3)

lw t0, 8(t3)

• Exploit high speed of
register file (100 ps)

1) WB updates value
2) ID reads new value

• Indicated in diagram by
shading

33

Might not always be possible to write then read in same cycle,
especially in high-frequency designs. Always check assumptions!

Data	Hazard:	ALU	Result

add s0, t0, t1

sub t2, s0, t0

or t6, s0, t3

instruction sequence

xor t5, t1, s0

sw s0, 8(t3)

5 5 5 5 5/9 9 9 9 9Value of s0

Without some fix, sub and or will calculate wrong result!

34

Solution	1:	Stalling

• Problem:	Instruction	depends	on	result	from	previous	instruction
– add s0,	t0,	t1

sub t2,	s0,	t3

• Bubble:	
– effectively	NOP:	affected	pipeline	stages	do	“nothing”

35

Stalls	and	Performance

• Stalls	reduce	performance
– But	stalls	are	required	to	get	correct	results

• Compiler	can	arrange	code	or	insert	NOPs	
(writes	to	register	x0)	to	avoid	hazards	and	
stalls
– Requires	knowledge	of	the	pipeline	structure

36

Solution	2:	Forwarding

add t0, t1, t2

or t3, t0, t5

sub t6, t0, t3

instruction sequence

xor t5, t1, t0

sw t0, 8(t3)

5 5 5 5 5/9 9 9 9 9Value of t0

Forwarding: grab operand from pipeline stage,
rather than register file

37

Forwarding	(aka	Bypassing)

• Use	result	when	it	is	computed
– Don’t	wait	for	it	to	be	stored	in	a	register
– Requires	extra	connections	in	the	datapath

38

Detect	Need	for	Forwarding	
(example)

add t0, t1, t2

or t3, t0, t5

sub t6, t0, t3

X M WD

instX.rd

instD.rs1

39

Compare destination of
older instructions in
pipeline with sources of
new instruction in
decode stage.
Must ignore writes to x0!

Forwarding	Path

40

IMEM

ALU
+4

DMEM
Branch
Comp.

Reg[]

AddrA

AddrB

DataA
AddrD

DataB

DataD

Addr

DataW
DataR

1
0

aluX

pcF+4

+4pcDpcF
pcX

pcM

instD

instX

rs1X

rs2X

aluM

rs2MimmXImm.
instM instW

Forwarding	Control	
Logic

Admin

• Midterm	I	graded
– Regrade	requests	till	Thursday	(also	for	HW	4)!
– Answers	online;	Ask	questions	in	piazza,	discussion,	Office	
Hour…

• Project	2.1	will	be	published	this	week!

41

Agenda

• Pipelining
• Hazards

– Structural
– Data

• R-type	instructions
• Load

– Control

• Instruction-Level	Parallelism

42

Load	Data	Hazard

1 cycle stall
unavoidable

43

forward

unaffected

Stall	Pipeline

Stall

44

repeat and
instruction
and forward

lw Data	Hazard

• Slot	after	a	load	is	called	a	load	delay	slot
– If	that	instruction	uses	the	result	of	the	load,	then	
the	hardware	will	stall	for	one	cycle

– Equivalent	to	inserting	an	explicit	nop in	the	slot
• except	the	latter	uses	more	code	space

– Performance	loss
• Idea:

– Put	unrelated	instruction	into	load	delay	slot
– No	performance	loss!

45

Code	Scheduling	to	Avoid	Stalls

• Reorder	code	to	avoid	use	of	load	result	in	the	next	instr!	
• RISC-V	code	for		A[3]=A[0]+A[1]; A[4]=A[0]+A[2]

46

Original Order:
lw t1, 0(t0)

lw t2, 4(t0)

add t3, t1, t2

sw t3, 12(t0)
lw t4, 8(t0)

add t5, t1, t4

sw t5, 16(t0)

Alternative:
lw t1, 0(t0)

lw t2, 4(t0)

lw t4, 8(t0)

add t3, t1, t2
sw t3, 12(t0)

add t5, t1, t4

sw t5, 16(t0)

Stall!

Stall!

9 cycles
7 cycles

No stalls as isA)

1:
addi t1, t0, 1
addi t2, t0, 2
addi t3, t0, 2
addi t3, t0, 4
addi t5, t1, 5

2:
add t1, t0, t0
addi t2, t0, 5
addi t4, t1, 5

3:	
lw t0, 0(t0)
add t1, t0, t0

Question: For each code sequences below,
choose one of the statements below:

No stalls with forwardingB)
Must stallC)

47

PEER INSTRUCTION

Agenda

• Pipelining
• Hazards

– Structural
– Data

• R-type	instructions
• Load

– Control

• Instruction-Level	Parallelism

48

