
CS 110
Computer Architecture

OpenMP, Cache Coherence

Instructor:
Sören Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca

HW	5	fastest	solution

Hash	Distributed	A*:
A	Scalable	Parallel	Approach

Kaiyuan	Xu

2

Bottleneck:	Heap
• about	one	half	of	total	runtime
• hard	to	parallelize

Solution
• using	multiple	heap

Figure	1:
time	consumed	on	each	part	of	one	tread	version	of	A*	searching	maze-4821

some	optimization	have	been	implemented
(created	by	perf and	Flame	Graphs)

3

Decentralizing

• every	vertex	is	handled	by	one	specific	threads
• every	thread	has	it’s	own	heap	and	popping	vertex	from	it
• inform	corresponding	threads	to	open	adjacent	vertices
• threads	receive	and	send	messages	repeatedly

Problems	and	Overheads
• work	division
• communicating	between	threads
• vertices	reopening
• termination	condition	and	detection

4

Dividing	work:	Hash

• mapping	vertices	to	threads	using	hash	function

Choosing	Hash	Function
• load	balancing:	randomness	of	hash	function
• locality:	mapping	adjacent	vertices	to	one	thread	

could	decreases	the	communication	between	
threads	but	increases	over	searching

Figure	2	[1]:
HDA*	distributes	work	by	

hashing	vertices	to	different	
processors.	Hence	this	simple	

graph	could	distribute	all	
vertices	of	a	color	to	a	
particular	processor.

5

Communication:	Message	Queue

• the	primary	overhead
• first	in	first	out
• asynchronous	sending	and	receiving
• multiple	senders	and	one	receiver
• implementation:	linked	list,	array

Figure	3:
a	message	queue	used	in	a	server

https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
6

Termination	condition

• popping	the	heap	no	longer	gets	the	global	minimum	estimated	(fs)	vertices
• vertices	may	needed	to	be	reopened	when	shorter	gs found
• asynchronous	message	queue	causing	data	inconsistency

Solution
• terminate	once	the	estimated	path	length	(fs)	of	all	vertices	in	heap	(in	every	

threads)	is	longer	than	the	shortest	path	found
• the	detection	is	needed	to	be	performed	after	no	message	is	on	sending, which

is, every threads finished all	local	works

7

Termination	detection

• problems	with	lock:	performance,	
deadlock

• fabulous	idea:	when	all	the	message	is	
received,	the	termination	is	reached

• naively	counting	the	number	of	message	
sent	and	received	suffers	from	data	
inconsistency	over	time

Solution
• still	count	sequentially,	but	count	it	in	two	

rounds,	first	the	message	received,	then	
the	message	sent

Figure	4	[2]:
data	inconsistency	over	time

Figure	5	[2]:
two	control	wave	method	solves	the	

problem

8

Implementation

• a	mixture	of		bidirectional	A*	and	HDA*
• simple	hash	function
• lock	free	linked	list	based	asynchronous	message	queue
• memory	pool	instead	of	ptmallc
• 2x	faster	than	bidirectional	A*,	should	be	better	according	to	other’s	result	[3]

Possible	Causes
• hash	function	chosen	increases	communication	overhead
• other	bottleneck	unnoticed
• different	test	cases

9

Reference	and	Acknowledgment

[1]	 Weinstock,	Ariana,	and	Rachel	Holladay.	"Parallel	A*	Graph	Search.”

[2]	 Mattern,	Friedemann.	"Algorithms	for	distributed	termination	detection."	Distributed	computing	
2.3	(1987):	161-175.

[3] Kishimoto,	Akihiro,	Alex	Fukunaga,	and	Adi	Botea.	"Scalable,	parallel	best-first	search	for	optimal	
sequential	planning."	Nineteenth	International	Conference	on	Automated	Planning	and	 Scheduling.	
2009.

[4] Fukunaga,	Alex,	et	al.	"A	Survey	of	Parallel	A."	arXiv preprint	arXiv:1708.05296	(2017).

I	appreciate	schoolmate	Jinrui Wang	for	sharing	the	he	paper	found	and	offering	a	better	testing	environment.

10

Review
• Sequential software is slow software
– SIMD and MIMD are paths to higher performance

• MIMD thru: multithreading processor cores
(increases utilization), Multicore processors
(more cores per chip)

• Synchronization – coordination among threads
– MIPS: atomic read-modify-write using load-

linked/store-conditional
• OpenMP as simple parallel extension to C
– Pragmas for forking multiple Threads
– ≈ C: small so easy to learn, but not very high level and

it’s easy to get into trouble
11

OpenMP Programming Model - Review

• Fork - Join Model:

• OpenMP programs begin as single process (master thread)
and executes sequentially until the first parallel region
construct is encountered
– FORK: Master thread then creates a team of parallel threads
– Statements in program that are enclosed by the parallel region

construct are executed in parallel among the various threads
– JOIN: When the team threads complete the statements in the

parallel region construct, they synchronize and terminate,
leaving only the master thread

12

parallel Pragma and Scope -
Review

• Basic OpenMP construct for parallelization:
#pragma omp parallel
{

/* code goes here */
}
– Each thread runs a copy of code within the block
– Thread scheduling is non-deterministic

• OpenMP default is shared variables
– To make private, need to declare with pragma:
#pragma omp parallel private (x)

13

OpenMP Directives (Work-Sharing)

14

Shares iterations of a
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section

Parallel Statement Shorthand

#pragma omp parallel
{
#pragma omp for
for(i=0; i<len; i++) { … }

}

can be shortened to:
#pragma omp parallel for
for(i=0; i<len; i++) { … }

• Also works for sections
15

This is the only
directive in the
parallel section

Building Block: for loop

for (i=0; i<max; i++) zero[i] = 0;

• Breaks for loop into chunks, and allocate each to a
separate thread
– e.g. if max = 100 with 2 threads:

assign 0-49 to thread 0, and 50-99 to thread 1
• Must have relatively simple “shape” for an OpenMP-

aware compiler to be able to parallelize it
– Necessary for the run-time system to be able to determine

how many of the loop iterations to assign to each thread
• No premature exits from the loop allowed
– i.e. No break, return, exit, goto statements

16

In general,
don’t jump
outside of any
pragma block

Parallel for pragma
#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = 0;

• Master thread creates additional threads,
each with a separate execution context

• All variables declared outside for loop are
shared by default, except for loop index
which is private per thread (Why?)

• Implicit “barrier” synchronization at end of
for loop

• Divide index regions sequentially per thread
– Thread 0 gets 0, 1, …, (max/n)-1;
– Thread 1 gets max/n, max/n+1, …, 2*(max/n)-1
– Why? 17

OpenMP Example

$ gcc-5 -fopenmp for.c;./a.out
% clang -Xpreprocessor -fopenmp -
lomp -o for for.c; ./for
thread 0, i = 0
thread 1, i = 3
thread 2, i = 6
thread 3, i = 8
thread 0, i = 1
thread 1, i = 4
thread 2, i = 7
thread 3, i = 9
thread 0, i = 2
thread 1, i = 5
00 01 02 13 14 15 26 27 38 39

18

The call to find the maximum number of threads that are available to do work is omp_get_max_threads()
(from omp.h).

OpenMP Timing

• Elapsed wall clock time:
double omp_get_wtime(void);
– Returns elapsed wall clock time in seconds
– Time is measured per thread, no guarantee can be

made that two distinct threads measure the same
time

– Time is measured from “some time in the past,” so
subtract results of two calls to omp_get_wtime
to get elapsed time

19

Matrix Multiply in OpenMP
// C[M][N] = A[M][P] × B[P][N]
start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, j, k)
for (i=0; i<M; i++){
for (j=0; j<N; j++){
tmp = 0.0;
for(k=0; k<P; k++){
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += A[i][k] * B[k][j];

}
C[i][j] = tmp;

}
}

run_time = omp_get_wtime() - start_time;

Outer loop spread across N
threads;
inner loops inside a single
thread

20

Notes on Matrix Multiply Example

• More performance optimizations available:
– Higher compiler optimization (-O2, -O3) to reduce

number of instructions executed
– Cache blocking to improve memory performance
– Using SIMD SSE instructions to raise floating point

computation rate (DLP)

21

Example: Calculating π

22

Sequential p

pi = 3.142425985001
• Resembles p, but not very accurate
• Let’s increase num_steps and parallelize 23

Parallelize (1) …

• Problem: each thread
needs access to the
shared variable sum

• Code runs sequentially
…

24

Parallelize (2) …

sum[0] sum[1]

1. Compute
sum[0]and sum[1]

in parallel

2. Compute
sum = sum[0] + sum[1]

sequentially

25

Parallel p … Trial Run

i = 1, id = 1
i = 0, id = 0
i = 2, id = 2
i = 3, id = 3
i = 5, id = 1
i = 4, id = 0
i = 6, id = 2
i = 7, id = 3
i = 9, id = 1
i = 8, id = 0
pi = 3.142425985001

26

Scale up: num_steps = 106

pi =
3.141592653590

You verify how many
digits are correct …

27

Can We Parallelize Computing sum?

Summation inside parallel section
• Insignificant speedup in this

example, but …
• pi = 3.138450662641
• Wrong! And value changes

between runs?!
• What’s going on?

Always looking for ways to
beat Amdahl’s Law …

28

Question
What are the possible
values of *(x1) after
executing this code by two
concurrent threads?

*(x1) = 100
lw x2,0(x1)
addi x2,x2,1
sw x2,0(x1)

Values of *(x1) ?
A: None of these
B: 100
C: 101
D: 102
E: 100 or 101
F: 101 or 102
G: 100 or 102
H: 100 or 101 or 102 29

Question
What are the possible
values of *(x1) after
executing this code by two
concurrent threads?

*(x1) = 100
lw x2,0(x1)
addi x2,x2,1
sw x2,0(x1)

Values of *(x1) ?
A: None of these
B: 100
C: 101
D: 102
E: 100 or 101
F: 101 or 102
G: 100 or 102
H: 100 or 101 or 102

If executed serially: 100à101à102
If both read 100, then both write 101

30

• Operation is really
pi = pi + sum[id]

• What if >1 threads reads current
(same) value of pi, computes the
sum, stores the result back to pi?

• Each processor reads same
intermediate value of pi!

• Result depends on who gets there
when
• A “race” à result is not

deterministic

What’s Going On?

31

OpenMP Reduction
double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private (sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX; // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that 1 or more variables that are private

to each thread are subject of reduction operation at end of
parallel region:
reduction(operation:var) where
– Operation: operator to perform on the variables (var) at the end of the parallel

region : +, *, -, &, ^, |, &&, or ||.
– Var: One or more variables on which to perform scalar reduction.

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++)

sum += A[i];
avg = sum/MAX;

32

parallel for, reduction
#include <omp.h>
#include <stdio.h>
/static long num_steps = 100000;
double step;
void main (){

int i; double x, pi, sum = 0.0;
step = 1.0 / (double)num_steps;

#pragma omp parallel for private(x) reduction(+:sum)
for (i=1; i<= num_steps; i++){

x = (i - 0.5) * step;
sum = sum + 4.0 / (1.0+x*x);

}
pi = sum * step;
printf ("pi = %6.8f\n", pi);

}
33

CACHE COHERENCE

34

Simple Multi-core Processor

35

Processor 0

Control

Datapath
PC

Registers
(ALU)

Memory Input

Output

Bytes

I/O-Memory Interfaces

Processor 0
Memory
Accesses

Processor 1

Control

Datapath
PC

Registers
(ALU)

Processor 1
Memory
Accesses

Multiprocessor Caches
• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed

recently
• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

36

Shared Memory and Caches
• What if?
– Processors 1 and 2 read Memory[1000] (value 20)

37

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000

1000 1000

20

0 1 2

Shared Memory and Caches
• Now:
– Processor 0 writes Memory[1000] with 40

38

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?

Keeping Multiple Caches Coherent
• Architect’s job: shared memory

=> keep cache values coherent
• Idea: When any processor has cache miss or

writes, notify other processors via interconnection
network
– If only reading, many processors can have copies
– If a processor writes, invalidate any other copies

• Write transactions from one processor, other
caches “snoop” the common interconnect
checking for tags they hold
– Invalidate any copies of same address modified in other

cache

39

Shared Memory and Caches
• Example, now with cache coherence
– Processors 1 and 2 read Memory[1000]
– Processor 0 writes Memory[1000] with 40

40

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0
Write
Invalidates
Other Copies

1000

1000 40

1000 40

Question:
Which statement(s) are true?

• A: Using write-through caches removes the
need for cache coherence

• B: Every processor store instruction must
check contents of other caches

• C: Most processor load and store accesses
only need to check in local private cache

• D: Only one processor can cache any memory
location at one time

41

Cache Coherency Tracked by Block

• Suppose block size is 32 bytes

• Suppose Processor 0 reading and writing variable X, Processor

1 reading and writing variable Y

• Suppose in X location 4000, Y in 4012

• What will happen?

42

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory

Coherency Tracked by Cache Block

• Block ping-pongs between two caches even
though processors are accessing disjoint
variables

• Effect called false sharing
• How can you prevent it?

43

Shared Memory and Caches
• Use valid bit to ”unload” cache lines (in

Processors 1 and 2)
• Dirty bit tells me: ”I am the only one using this

cache line”! => no need to announce on
Network!

44

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

Review: Understanding Cache Misses:

The 3Cs

• Compulsory (cold start or process migration, 1st reference):

– First access to block, impossible to avoid; small effect for long-running

programs

– Solution: increase block size (increases miss penalty; very large blocks

could increase miss rate)

• Capacity (not compulsory and…)

– Cache cannot contain all blocks accessed by the program even with
perfect replacement policy in fully associative cache

– Solution: increase cache size (may increase access time)

• Conflict (not compulsory or capacity and…):

– Multiple memory locations map to the same cache location

– Solution 1: increase cache size

– Solution 2: increase associativity (may increase access time)

– Solution 3: improve replacement policy, e.g.. LRU

45

Fourth “C” of Cache Misses:
Coherence Misses

• Misses caused by coherence traffic with other
processor

• Also known as communication misses because
represents data moving between processors
working together on a parallel program

• For some parallel programs, coherence misses
can dominate total misses

46

And in Conclusion, …

• Multiprocessor/Multicore uses Shared
Memory
– Cache coherency implements shared memory

even with multiple copies in multiple caches
– False sharing a concern; watch block size!

• OpenMP as simple parallel extension to C
– Threads, Parallel for, private, reductions …
– ≈ C: small so easy to learn, but not very high level

and it’s easy to get into trouble
– Much we didn’t cover – including other

synchronization mechanisms (locks, etc.)
47

