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HW	5	fastest	solution

Hash	Distributed	A*:
A	Scalable	Parallel	Approach

Kaiyuan	Xu
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Bottleneck:	Heap
• about	one	half	of	total	runtime
• hard	to	parallelize

Solution
• using	multiple	heap

Figure	1:
time	consumed	on	each	part	of	one	tread	version	of	A*	searching	maze-4821

some	optimization	have	been	implemented
(created	by	perf and	Flame	Graphs)
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Decentralizing

• every	vertex	is	handled	by	one	specific	threads
• every	thread	has	it’s	own	heap	and	popping	vertex	from	it
• inform	corresponding	threads	to	open	adjacent	vertices
• threads	receive	and	send	messages	repeatedly

Problems	and	Overheads
• work	division
• communicating	between	threads
• vertices	reopening
• termination	condition	and	detection
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Dividing	work:	Hash

• mapping	vertices	to	threads	using	hash	function

Choosing	Hash	Function
• load	balancing:	randomness	of	hash	function
• locality:	mapping	adjacent	vertices	to	one	thread	

could	decreases	the	communication	between	
threads	but	increases	over	searching

Figure	2	[1]:
HDA*	distributes	work	by	

hashing	vertices	to	different	
processors.	Hence	this	simple	

graph	could	distribute	all	
vertices	of	a	color	to	a	
particular	processor.
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Communication:	Message	Queue

• the	primary	overhead
• first	in	first	out
• asynchronous	sending	and	receiving
• multiple	senders	and	one	receiver
• implementation:	linked	list,	array

Figure	3:
a	message	queue	used	in	a	server

https://docs.microsoft.com/en-us/azure/architecture/patterns/queue-based-load-leveling
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Termination	condition

• popping	the	heap	no	longer	gets	the	global	minimum	estimated	(fs)	vertices
• vertices	may	needed	to	be	reopened	when	shorter	gs found
• asynchronous	message	queue	causing	data	inconsistency

Solution
• terminate	once	the	estimated	path	length	(fs)	of	all	vertices	in	heap	(in	every	

threads)	is	longer	than	the	shortest	path	found
• the	detection	is	needed	to	be	performed	after	no	message	is	on	sending, which

is, every threads finished all	local	works
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Termination	detection

• problems	with	lock:	performance,	
deadlock

• fabulous	idea:	when	all	the	message	is	
received,	the	termination	is	reached

• naively	counting	the	number	of	message	
sent	and	received	suffers	from	data	
inconsistency	over	time

Solution
• still	count	sequentially,	but	count	it	in	two	

rounds,	first	the	message	received,	then	
the	message	sent

Figure	4	[2]:
data	inconsistency	over	time

Figure	5	[2]:
two	control	wave	method	solves	the	

problem
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Implementation

• a	mixture	of		bidirectional	A*	and	HDA*
• simple	hash	function
• lock	free	linked	list	based	asynchronous	message	queue
• memory	pool	instead	of	ptmallc
• 2x	faster	than	bidirectional	A*,	should	be	better	according	to	other’s	result	[3]

Possible	Causes
• hash	function	chosen	increases	communication	overhead
• other	bottleneck	unnoticed
• different	test	cases
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Review
• Sequential software is slow software
– SIMD and MIMD are paths to higher performance

• MIMD thru: multithreading processor cores 
(increases utilization), Multicore processors 
(more cores per chip)

• Synchronization – coordination among threads
– MIPS: atomic read-modify-write using load-

linked/store-conditional
• OpenMP as simple parallel extension to C
– Pragmas for forking multiple Threads
– ≈ C: small so easy to learn, but not very high level and 

it’s easy to get into trouble
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OpenMP Programming Model - Review

• Fork - Join Model:

• OpenMP programs begin as single process (master thread) 
and executes sequentially until the first parallel region 
construct is encountered
– FORK:  Master thread then creates a team of parallel threads
– Statements in program that are enclosed by the parallel region 

construct are executed in parallel among the various threads
– JOIN: When the team threads complete the statements in the 

parallel region construct, they synchronize and terminate, 
leaving only the master thread
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parallel Pragma and Scope -
Review

• Basic OpenMP construct for parallelization:
#pragma omp parallel 
{

/* code goes here */
}
– Each thread runs a copy of code within the block
– Thread scheduling is non-deterministic

• OpenMP default is shared variables
– To make private, need to declare with pragma:
#pragma omp parallel private (x)
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OpenMP Directives (Work-Sharing)

14

Shares iterations of a 
loop across the threads

Each section is executed
by a separate thread

Serializes the execution
of a thread

• These are defined within a parallel section



Parallel Statement Shorthand

#pragma omp parallel
{
#pragma omp for
for(i=0; i<len; i++) { … }

}

can be shortened to:
#pragma omp parallel for
for(i=0; i<len; i++) { … }

• Also works for sections
15

This is the only 
directive in the 
parallel section



Building Block: for loop

for (i=0; i<max; i++) zero[i] = 0;

• Breaks for loop into chunks, and allocate each to a 
separate thread
– e.g. if max = 100 with 2 threads:

assign 0-49 to thread 0, and 50-99 to thread 1
• Must have relatively simple “shape” for an OpenMP-

aware compiler to be able to parallelize it
– Necessary for the run-time system to be able to determine 

how many of the loop iterations to assign to each thread
• No premature exits from the loop allowed
– i.e. No break, return, exit, goto statements

16

In general, 
don’t jump 
outside of any 
pragma block



Parallel for pragma
#pragma omp parallel for
for (i=0; i<max; i++) zero[i] = 0;

• Master thread creates additional threads, 
each with a separate execution context

• All variables declared outside for loop are 
shared by default, except for loop index 
which is private per thread (Why?)

• Implicit “barrier” synchronization at end of 
for loop

• Divide index regions sequentially per thread
– Thread 0 gets 0, 1, …, (max/n)-1; 
– Thread 1 gets max/n, max/n+1, …, 2*(max/n)-1
– Why? 17



OpenMP Example

$ gcc-5 -fopenmp for.c;./a.out
% clang -Xpreprocessor -fopenmp -
lomp -o for for.c; ./for
thread 0, i =  0
thread 1, i =  3
thread 2, i =  6
thread 3, i =  8
thread 0, i =  1
thread 1, i =  4
thread 2, i =  7
thread 3, i =  9
thread 0, i =  2
thread 1, i =  5
00 01 02 13 14 15 26 27 38 39
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The call to find the maximum number of threads that are available to do work is omp_get_max_threads() 
(from omp.h).



OpenMP Timing

• Elapsed wall clock time:
double omp_get_wtime(void); 
– Returns elapsed wall clock time in seconds
– Time is measured per thread, no guarantee can be 

made that two distinct threads measure the same 
time

– Time is measured from “some time in the past,” so 
subtract results of two calls to omp_get_wtime
to get elapsed time

19



Matrix Multiply in OpenMP
// C[M][N] = A[M][P] × B[P][N]
start_time = omp_get_wtime();
#pragma omp parallel for private(tmp, j, k)
for (i=0; i<M; i++){
for (j=0; j<N; j++){
tmp = 0.0;
for( k=0; k<P; k++){
/* C(i,j) = sum(over k) A(i,k) * B(k,j)*/
tmp += A[i][k] * B[k][j];

}
C[i][j] = tmp;

}
}

run_time = omp_get_wtime() - start_time;

Outer loop spread across N 
threads; 
inner loops inside a single 
thread
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Notes on Matrix Multiply Example

• More performance optimizations available:
– Higher compiler optimization (-O2, -O3) to reduce 

number of instructions executed
– Cache blocking to improve memory performance
– Using SIMD SSE instructions to raise floating point 

computation rate (DLP)
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Example: Calculating π

22



Sequential p

pi = 3.142425985001
• Resembles p, but not very accurate
• Let’s increase num_steps and parallelize 23



Parallelize (1) …

• Problem: each thread 
needs access to the 
shared variable sum

• Code runs sequentially 
…
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Parallelize (2) …

sum[0] sum[1]

1. Compute 
sum[0]and sum[1]

in parallel

2. Compute
sum = sum[0] + sum[1]

sequentially
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Parallel p … Trial Run

i =  1,  id =  1
i =  0,  id =  0
i =  2,  id =  2
i =  3,  id =  3
i =  5,  id =  1
i =  4,  id =  0
i =  6,  id =  2
i =  7,  id =  3
i =  9,  id =  1
i =  8,  id =  0
pi = 3.142425985001
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Scale up: num_steps = 106

pi = 
3.141592653590

You verify how many
digits are correct …
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Can We Parallelize Computing sum?

Summation inside parallel section
• Insignificant speedup in this 

example, but …
• pi = 3.138450662641
• Wrong! And value changes

between runs?!
• What’s going on?

Always looking for ways to 
beat Amdahl’s Law …
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Question
What are the possible 
values of *(x1) after 
executing this code by two 
concurrent threads?

# *(x1) = 100
lw x2,0(x1)
addi x2,x2,1
sw x2,0(x1)

Values of *(x1) ?
A: None of these
B: 100
C: 101
D: 102
E: 100 or 101
F: 101 or 102
G: 100 or 102
H: 100 or 101 or 102 29



Question
What are the possible 
values of *(x1) after 
executing this code by two 
concurrent threads?

# *(x1) = 100
lw x2,0(x1)
addi x2,x2,1
sw x2,0(x1)

Values of *(x1) ?
A: None of these
B: 100
C: 101
D: 102
E: 100 or 101
F: 101 or 102
G: 100 or 102
H: 100 or 101 or 102

If executed serially: 100à101à102
If both read 100, then both write 101
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• Operation is really 
pi = pi + sum[id]

• What if >1 threads reads current 
(same) value of pi, computes the 
sum, stores the result back to pi?

• Each processor reads same 
intermediate value of pi!

• Result depends on who gets there 
when
• A “race” à result is not 

deterministic

What’s Going On?
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OpenMP Reduction
double avg, sum=0.0, A[MAX]; int i;
#pragma omp parallel for private ( sum )
for (i = 0; i <= MAX ; i++) 

sum += A[i]; 
avg = sum/MAX;  // bug

• Problem is that we really want sum over all threads!
• Reduction: specifies that 1 or more variables that are private 

to each thread are subject of reduction operation at end of 
parallel region:
reduction(operation:var) where
– Operation: operator to perform on the variables (var) at the end of the parallel 

region :     +, *, -, &, ^, |, &&, or ||.
– Var: One or more variables on which to perform scalar reduction. 

double avg, sum=0.0, A[MAX]; int i;
#pragma omp for reduction(+ : sum)
for (i = 0; i <= MAX ; i++) 

sum += A[i]; 
avg = sum/MAX;
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parallel for, reduction
#include <omp.h>
#include <stdio.h>
/static long num_steps = 100000; 
double step; 
void main (){

int i; double x, pi, sum = 0.0; 
step = 1.0 / (double)num_steps; 

#pragma omp parallel for private(x) reduction(+:sum)
for (i=1; i<= num_steps; i++){ 

x = (i - 0.5) * step; 
sum = sum + 4.0 / (1.0+x*x); 

} 
pi = sum * step; 
printf ("pi = %6.8f\n", pi);

}
33



CACHE COHERENCE
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Simple Multi-core Processor
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Processor 0

Control

Datapath
PC

Registers
(ALU)

Memory Input

Output

Bytes

I/O-Memory Interfaces

Processor 0 
Memory 
Accesses

Processor 1

Control

Datapath
PC

Registers
(ALU)

Processor 1 
Memory 
Accesses



Multiprocessor Caches
• Memory is a performance bottleneck even with one processor
• Use caches to reduce bandwidth demands on main memory
• Each core has a local private cache holding data it has accessed 

recently
• Only cache misses have to access the shared common memory

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O
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Shared Memory and Caches
• What if? 
– Processors 1 and 2 read Memory[1000] (value  20)
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Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

1000

20

1000 

1000 1000

20

0 1 2



Shared Memory and Caches
• Now:
– Processor 0 writes Memory[1000] with 40
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Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

1000

1000 40

1000 40

Problem?



Keeping Multiple Caches Coherent
• Architect’s job: shared memory 

=> keep cache values coherent
• Idea: When any processor has cache miss or 

writes, notify other processors via interconnection 
network
– If only reading, many processors can have copies
– If a processor writes, invalidate any other copies

• Write transactions from one processor, other 
caches  “snoop” the common interconnect 
checking for tags they hold
– Invalidate any copies of same address modified in other 

cache
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Shared Memory and Caches
• Example, now with cache coherence
– Processors 1 and 2 read Memory[1000]
– Processor 0 writes Memory[1000] with 40

40

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O

0 1 2

1000 20 1000 20

Processor 0
Write
Invalidates
Other Copies

1000

1000 40

1000 40



Question:
Which statement(s) are true?

• A: Using write-through caches removes the 
need for cache coherence

• B: Every processor store instruction must 
check contents of other caches

• C: Most processor load and store accesses 
only need to check in local private cache

• D: Only one processor can cache any memory 
location at one time
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Cache Coherency Tracked by Block

• Suppose block size is 32 bytes

• Suppose Processor 0 reading and writing variable X, Processor 

1 reading and writing variable Y

• Suppose in X location 4000,  Y in 4012

• What will happen?

42

Processor 0 Processor 1

4000 4000 4004 4008 4012 4016 4028

Tag 32-Byte Data Block

Cache 0 Cache 1

Memory



Coherency Tracked by Cache Block

• Block ping-pongs between two caches even 
though processors are accessing disjoint 
variables

• Effect called false sharing 
• How can you prevent it?
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Shared Memory and Caches
• Use valid bit to ”unload” cache lines (in 

Processors 1 and 2)
• Dirty bit tells me: ”I am the only one using this 

cache line”! => no need to announce on 
Network!

44

Processor Processor Processor

Cache Cache Cache

Interconnection Network

Memory I/O
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Review: Understanding Cache Misses:

The 3Cs

• Compulsory (cold start or process migration, 1st reference):

– First access to block, impossible to avoid; small effect for long-running 

programs

– Solution: increase block size (increases miss penalty; very large blocks 

could increase miss rate)

• Capacity (not compulsory and…)

– Cache cannot contain all blocks accessed by the program even with 
perfect replacement policy in fully associative cache

– Solution: increase cache size (may increase access time)

• Conflict (not compulsory or capacity and…):

– Multiple memory locations map to the same cache location

– Solution 1: increase cache size

– Solution 2: increase associativity (may increase access time)

– Solution 3: improve replacement policy, e.g.. LRU
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Fourth “C” of Cache Misses:
Coherence Misses

• Misses caused by coherence traffic with other 
processor

• Also known as communication misses because 
represents data moving between processors 
working together on a parallel program

• For some parallel programs, coherence misses 
can dominate total misses
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And in Conclusion, …

• Multiprocessor/Multicore uses Shared 
Memory
– Cache coherency implements shared memory 

even with multiple copies in multiple caches
– False sharing a concern; watch block size!

• OpenMP as simple parallel extension to C
– Threads, Parallel for, private, reductions … 
– ≈ C: small so easy to learn, but not very high level 

and it’s easy to get into trouble
– Much we didn’t cover – including other 

synchronization mechanisms (locks, etc.)
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