CS 110
Computer Architecture

Virtual Memory

Instructor:
Soren Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca

Review

Programmed |/O
Polling vs. Interrupts

Booting a Computer
— BIOS, Bootloader, OS Boot, Init

Supervisor Mode, Syscalls

Base and Bounds
— Simple, but doesn’t give us everything we want

Intro to VM

Traps/Interrupts/Exceptions.

altering the normal flow of control

trap

program handler

An external or internal event that needs to be processed - by
another program - the OS. The event is often unexpected from
original program’s point of view.

Terminology

In CA (you’ll see other definitions in use elsewhere):

* Interrupt — caused by an event external to current
running program (e.g. key press, mouse activity)

— Asynchronous to current program, can handle
Interrupt on any convenient instruction

* Exception — caused by some event during
execution of one instruction of current running

program (e.g., page fault, bus error, illegal
instruction)
— Synchronous, must handle exception on instruction
that causes exception
* Trap — action of servicing interrupt or exception
by hardware jump to “trap handler” code

Precise Traps

 Trap handler’s view of machine state is that every
instruction prior to the trapped one has completed, and
no instruction after the trap has executed.

* |Implies that handler can return from an interrupt by
restoring user registers and jumping back to interrupted
instruction (EPC register will hold the instruction address)

— Interrupt handler software doesn’t need to understand the
pipeline of the machine, or what program was doing!

— More complex to handle trap caused by an exception than
interrupt

* Providing precise traps is tricky in a pipelined superscalar
out-of-order processor!

— But handling imprecise interrupts in software is even worse.

Trap Handling in 5-Stage Pipeline

Inst. Data

Decode

Mem >+ Mem
PC address Illegal Overflow Data address
Exception Opcode Exceptlons

Asynchronous Interrupts

 How to handle multiple simultaneous
exceptions in different pipeline stages?

e How and where to handle external
asynchronous interrupts?

Save Exceptions Until Commit

Commit
Point .

Inst.
Mem

D)

Decode +

O

PC address Llllegal Overflow |Data addres

Exception I Opcode I I Exceptions
Select :I :I >
Handler Kill F Kill D Kill E

PC Stage Stage Stage

EPC Cause

EEENEEEEEER EEEEE(QNE N EEEEEEDN

v

7/
IAsynchronous " Ki//‘

Interrupts |Writeback

Handling Traps in In-Order Pipeline

Hold exception flags in pipeline until commit point (M
stage)

Exceptions in earlier instructions override exceptions
in later instructions

Exceptions in earlier pipe stages override later
exceptions for a given instruction

Inject external interrupts at commit point (override
others)

If exception/interrupt at commit: update Cause and
EPC registers, kill all stages, inject handler PC into
fetch stage

Trap Pipeline Diagram

time
t0 t1 t2 t3 t4 t5 t6 t7
(I,) 096: ADD IF, ID;y EXy MA;~- overflow!
(I,) 100: XOR IF, ID, Exzk- -
(I3) 104: SUB IF, ID3\— - -
108: ADD - - - -

Trap Handler code

Admin

 Final: Tue June 19

* Content:
— All lectures, labs, HW, projects

* |f you cannot attend the final exam:
— Write an email to Prof. Schwertfeger (soerensch@)
— Let me know when you are available before and after

— Let me know if you attended Midterm | and Midterm
1l

Virtual Memory

“Bare” 5-Stage Pipeline

Physical Physical

Address | |nst. Decod Address Data
| Cache ecode | Cache
Physical "| Memory Controller) Physical
Address Address

| Physical Address

Main Memory (DRAM)

* |[n a bare machine, the only kind of address
is a physical address

12

What do we need Virtual Memory for?
Reason 1: Adding Disks to Hierarchy

* Need to devise a mechanism to “connect”
memory and disk in the memory hierarc

Yy

rrrrrrrrr

SSSSSSSSS
SUPER EXPENSIVE
TINY CAPACITY

FASTER
EXPENSIVE
SMALL CAPACITY

.........

FAST
PRICED REASONABLY
AVERAGE CAPACITY

SOLID STATE MEMORY AVERAGE SPEED

PRICED REASONABLY
AVERAGE CAPACITY

VIRTUAL MEMORY SLOW

[

CHEA
R \ LARGE CAPACTITY

A Simplified Computer Memory Hierarchy
lllustration: Ryan J. Leng

13

What do we need Virtual Memory for?
Reason 2: Simplifying Memory for Apps

* Applications should see ~ 7FFF FFFFye, stack
the straightforward Y A
memory layout we saw
earlier ->

e User-space applications 7
should think they own heap
all of memory)

* So we give them a static data
virtual view of memory code

~ 0000 0000},

14

What do we need Virtual Memory for?
Reason 3: Protection Between Processes

* With a bare system, addresses issued with
loads/stores are real physical addresses

* This means any program can issue any address,
therefore can access any part of memory, even
areas which it doesn’t own

— Ex: The OS data structures

 We should send all addresses through a
mechanism that the OS controls, before they
make it out to DRAM - a translation mechanism

15

Address Spaces

* The set of addresses labeling all of memory
that we can access

* Now, 2 kinds:

— Virtual Address Space - the set of addresses that
the user program knows about

— Physical Address Space - the set of addresses that
map to actual physical cells in memory

* Hidden from user applications

* So, we need a way to map between these two
address spaces

Blocks vs. Pages

In caches, we dealt with individual blocks

— Usually ¥64B on modern systems
— We could “divide” memory into a set of blocks

In VM, we deal with individual pages

— Usually ~¥4 KB on modern systems
* Larger sizes also available: 4MB, very modern 1GB!

— Now, we’ll “divide” memory into a set of pages

Common point of confusion: Bytes, Words,
Blocks, Pages are all just different ways of looking

at memory!

Bytes, Words, Blocks, Pages

Ex: 16 KiB DRAM, 4 KiB Pages (for VM), 128 B
blocks (for caches), 4 B words (for lw/sw)

1 Memory

A

Page 3

Pag

16

Can think of
memory as:

- 4 Pages

OR

- 128 Blocks
OR

- 4096 Words

Page 0

1 Page

|

Block 31

1 Block

Word 31

Can think of

a page as:

- 32 Blocks

OR

- 1024 Words

Block O

Word O

18

Address Translation

 So, what do we want to achieve
hardware level?

at the

— Take a Virtual Address, that points to a spot in the

Virtual Address Space of a particu
map it to a Physical Address, whic
physical spot in DRAM of the who

ar program, and
n points to a

e machine

WULUEINECIIC I Virtual Page Number m

Physical Address Physical Page Number m 19

Address Translation

VALCEIRECLISSI Virtual Page Number m

Address
Translation

Physical Address Physical Page Number

The rest of the lecture is all about implementing

Copy
Bits

20

Paged Memory Systems

* Processor-generated address can be split into:

* A page table contains the physical address of the base

of each page

—]

W N = O

WIN |,]|O

N 3
Address Space Page Table
of Program #1 m #1 2

of Progra

Physical
Memory

Page tables make it possible to store the
pages of a program non-contiguously.

21

Private (Virtual) Address Space per Program

Prog 1 B N/AL

Page Table

Prog 2 V81

Page Table

Prog 3

Page Table
Each program has a page table

Page table contains an entry for each prog page
Physical Memory acts like a “cache” of pages for currently

oS

pages

® 0 0
....................... >
S I
e &
............ S
=
©
O
0))
............ >
....................... i -
........... D_

running programs. Not recently used pages are stored
in secondary memorty, e.g. disk (in "swap partition”)

22

Where Should Page Tables Reside?

e Space required by the page tables (PT) is proportional
to the address space, number of users, ...

=>Too large to keep in registers inside CPU

* |dea: Keep page tables in the main memory

— Needs one reference to retrieve the page base address and
another to access the data word

=> doubles the number of memory references! (but we can
fix this using something we already know about...)

23

Page Tables in Physical Memory

Prog 1 Virtual
Address Space

.

Prog 2 Virtual
Address Space

T

,Progl

) 4

PT 7

Physical Memory

24

Linear (simple) Page Table

* Page Table Entry (PTE)

contains:

— 1 bit to indicate if page exists
— And either PPN or DPN:

PPN (physical page number)
for a memory-resident page

DPN (disk page number) for a
page on the disk

— Status bits for protection and
usage (read, write, exec)
e OS sets the Page Table Base
Register whenever active

user process changes

Page Table

PPN

PPN

| DPN

| DPN

§%%

PPN

PPN

DPN

DPN

’

PPN

PPN

Data Pages

Offset

VPN

PT Base Registenl | VPN

Offset

Virtual address

25

Suppose an instruction references a
memory page that isn’t in DRAM?

 We get a exception of type “page fault”

* Page fault handler does the following:
— If virtual page doesn’t yet exist, assign an unused page in
DRAM, or if page exists ...

— Initiate transfer of the page we’re requesting from disk to
DRAM, assigning to an unused page

— If no unused page is left, a page currently in DRAM is
selected to be replaced (based on usage)

— The replaced page is written (back) to disk, page table
entry that maps that VPN->PPN is marked as invalid/DPN

— Page table entry of the page we’re requesting is updated
with a (now) valid PPN

26

Size of Linear Page Table
With 32-bit memory addresses, 4-KB pages:

=> 232 / 212 = 220 yiirtual pages per user, assuming 4-Byte PTEs,
=> 2?0 PTEs, i.e, 4 MB page table per process!

Larger pages?
e Internal fragmentation (Not all memory in page gets used)
e Larger page fault penalty (more time to read from disk)

What about 64-bit virtual address space???
e Even 1MB pages would require 24* 8-Byte PTEs (35 TB!)

What is the “saving grace” ? Most processes only use a set of
high address (stack), and a set of low address (instructions,
heap)

27

Hierarchical Page Table — exploits

sparcity of virtual address space use
Virtual Address

31 22 21 1211 0
pl p2 offset
\ v A v)
10-bit 10-bit
L1 index L2 index L,
Root of the Current ‘
Page Table ml p2 \
]
(Processor Level 1
Register) Page Table %
Level 2
page in primary memory Page Tables

page in secondary memory

PTE of istent page
77 of a nonexistent pag Data Pages

Physical Memory

Address Translation & Protection

Virtual Address | Virtual Page No. (VPN) offset

Kernel/User Mode

Read/Write

Exception?
Physical Address |Physical Page No. (PPN) | offset

e Every instruction and data access needs address
translation and protection checks

A good VM design needs to be fast (~ one cycle) and
space efficient

29

Translation Lookaside Buffers (TLB)

Address translation is very expensive!
In a two-level page table, each reference
becomes several memory accesses

Solution: Cache some translations in TLB

TLB hit => Single-Cycle Translation
TLB miss => Page-Table Walk to refill

virtual address VPN offset
|

VRW|D| tag PPN (VPN = virtual page number)

(PPN = physical page number)

1 | 1

hit? physical address PPN offset

30

TLB Designs

Typically 32-128 entries, usually fully associative

— Each entry maps a large page, hence less spatial locality across
pages => more likely that two entries conflict

— Sometimes larger TLBs (256-512 entries) are 4-8 way set-
associative

— Larger systems sometimes have multi-level (L1 and L2) TLBs
Random or FIFO replacement policy
Upon context switch? New VM space! Flush TLB ...

“TLB Reach”: Size of largest virtual address space that can
be simultaneously mapped by TLB

Example: 64 TLB entries, 4KB pages, one page per entry

TLB Reach =

31

VM-related events in pipeline

Inst Inst. Decode Data Data
I TLB [Cache P+ TLB [Cache
TLB miss? Page Fault? TLB miss? Page Fault?
Protection violation? Protection violation?

Handling a TLB miss needs a hardware or
software mechanism to refill TLB

— usually done in hardware now

Handling a page fault (e.g., page is on disk) needs
a precise trap so software handler can easily
resume after retrieving page

Handling protection violation may abort process

32

Hierarchical Page Table Walk: SPARC v8

Virtual Address |Index 1 Index 2 Index 3 Offset

31 23 17 11 0
Context| Context Table
Table .
Registern L1 Table
Context oot Pl '
Registern L2 Table
"L_PTP > L3 Table
"L_PTP >
"L_PTE |
31 11 4 O
Physical Address PPN Offset

MMU does this table walk in hardware on a TLB miss

33

Page-Based Virtual-Memory Machine

Page Fault?
Protection violation?

Virtual
Address Physical

\ Address

Inst. j Inst.
TLB Cache

a

Miss?

Decode

(Hardware Page-Table Walk)

Page Fault?
Protection violation?

Virtual
Address

> +

|

Physical

- Table Walker

»

Address

v

Memory Controller

A

A

Main Memory (DRAM)

Physical
\ Address
Data Data
TLB Cache
Miss? | 1
Hardware Page <
) Physical
) Address

Physical Address

* Assumes page tables held in untranslated physical memory

34

Address Translation:
putting it all together

Virtual Address
l

B hardware
B hardware or software

[] software

in memory denied permitted

Page Fault Tindate TI B! | Protection Physical

not in memory

(OS loads page) '''''''''''''''''''''''''''''''' Fault Address
l (to cache)

Where? SEGFAULT

35

Modern Virtual Memory Systems

lllusion of a large, private, uniform store

Protection & Privacy
several users, each with their private
address space and one or more
shared address spaces
page table = name space

Demand Paging
Provides the ability to run programs
larger than the primary memory

Hides differences in machine
configurations

The price is address translation on
each memory reference

OS

user

Swapping Store
(Disk)
N

Primary

Memory
3+ |

-/

VA

—

N—

mapping

36

Remember: Out of Memory

* Insufficient free memory: malloc () returns NULL

int main(void) {
const int G = 1024x1024x1024;
for (int n=0; ;n++) {
char xp = malloc(Gksizeof(char));
if (p == NULL) {

fprintf(stderr,
“"failed to allocate > %g TiBytes\n", n/1000.0);
return 1; // abort program
¥
// no free, keep allocating until out of memory

$ gcc OutOfMemory.c; ./a.out
failed to allocate > 131 TiBytes

What'’s going on?

48bit for address translation only

FFFFFFFF FFFFFFFF
Canonical "higher half"
FFFF8000 00000000

Still provides plenty of space!
Higher bits “sign extended”:
“canonical form”

Noncanonical

Convention: “Higher half” for addresses
the Operating System

Intel has plans (“whitepaper”) for ===
56 bit translation — no hardware yet “eescceoe oosocoee

00007FFF FFFFFFFF

https://en.wikipedia.org/wiki/X86-64#Virtual address space details

38

https://en.wikipedia.org/wiki/X86-64

Using 131 TiBytes of Memory!?

* Try reading and writing from those pointers:
works!

* Even writing Gigabaytes of memory:
works!

* Memory Compression!

— Take no-recently used pages, compress them =>
free the physical page

https://www.lifewire.com/understanding-compressed-memory-0s-x-2260327

Process Name Memory Threads Ports PID User Compressed M... Real Mem

a.out 60.51 GB 1 10 22329 schwerti 54.30 GB 6.22 GB

https://www.lifewire.com/understanding-compressed-memory-os-x-2260327

Virtual Machines

Virtual Machine

Virtual Memory (VM) != Virtual Machine (VM) (e.g. Virtual
Box)

Emulation: Run a complete virtual CPU & Memory & ... - a
complete virtual machine in software (e.g. MARS)

Virtual Machine: Run as many instructions as possible
directly on CPU, only simulate some parts of the machine.

Last lecture: Supervisor Mode & Use Mode;
now also: Virtual Machine Mode

— Host OS activates virtual execution mode for guest OS =>

— Guest OS thinks it runs in supervisor mode, but in fact it doesn’t
have access to physical memory! (among other limitations)
CPUs support it (AMD-V, Intel VT-x), e.g. new Intel
instructions: VMPTRLD, VMPTRST, VMCLEAR, VMREAD,
VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF,
and VMXON

What about the memory in Virtual
Machines?

e Need to translate Guest Virtual Address to Guest

Physical address to Machine (Host) Physical address:

Earlier the Guest part was done (transparently) in
software by the Virtual Machine ...

Virtual Machine #1

\

SSSSSS

@iﬁ =
el | |

now in hardware!

Virtual Machine #2

SSSSSSSSSSSSS

ssssss

iw i
vusene

_/

T oesbeiniiedd

Future Extensions: EPT

EPT: Overview

CR3 EPT Base Pointer
Guest Intel® 64 Host
Linear Page Physical
Address Tables Address

* Intel® 64 page tables
— Map guest-linear to guest-physical (translated again)
— Can be read and written by guest

* New EPT page tables under VMM control
— Map guest-physical to host-physical (accesses memory)
— Referenced by new EPT base pointer

* No VM exits due to page faults, INVLPG, or CR3 accesses

Intel® VT Roadmap: Overview

Standards for 1/O-device sharing:

. « Natively sharable I/O devices
Ve =l » Endpoint DMA-translation caching
I/O Focus ——
Infrastructure for 1/0-device
VeCtO[' 2: - DMA protection and remapp

« Interrupt filtering and remapy

Platform Focus
Establish foundation ... followed by on going evolution of

Vector 1: @ for virtualization in the < Microarchitectural (e.g., lower VM
Processor FOCUS @ Intel® 64 and Itanium® -+ Architectural (e.g., extended page

architectures. ..

VMM Software-only VMMs Simpler and more Improved CPU and /O virtualizatiol

« Binary translation Secure VMMs through and Functionality as VMMs exploit
Yo)i\ 'Z1(= - Paravirtualization foundation of provided by VT-x, VT-i, VT-d

. + Device Emulation virtualizable ISAs ‘
Evolution
Past Today mee————
No Hardware VMM software evolution over
Support

time with hardware support

Conclusion: VM features track
historical uses

Bare machine, only physical addresses
— One program owned entire machine
Batch-style multiprogramming
— Several programs sharing CPU while waiting for 1/O
— Base & bound: translation and protection between programs (not virtual
memory)
— Problem with external fragmentation (holes in memory), needed occasional
memory defragmentation as new jobs arrived
Time sharing
— More interactive programs, waiting for user. Also, more jobs/second.
— Motivated move to fixed-size page translation and protection, no external
fragmentation (but now internal fragmentation, wasted bytes in page)
— Motivated adoption of virtual memory to allow more jobs to share limited
physical memory resources while holding working set in memory
Virtual Machine Monitors
— Run multiple operating systems on one machine
— ldea from 1970s IBM mainframes, now common on laptops
* e.g., run Windows on top of Mac OS X
— Hardware support for two levels of translation/protection
* Guest OS virtual -> Guest OS physical -> Host machine physical

— Also basis of Cloud Computing
* Virtual machine instances on EC2

