
CS 110
Computer Architecture

Dependability and RAID

Instructor:
Sören Schwertfeger

https://robotics.shanghaitech.edu.cn/courses/ca

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca

Review: I/O
• “Memory mapped I/O”: Device control/data

registers mapped to CPU address space
• CPU synchronizes with I/O device:
– Polling
– Interrupts

• “Programmed I/O”:
– CPU execs lw/sw instructions for all data movement

to/from devices
– CPU spends time doing 2 things:

1. Getting data from device to main memory
2. Using data to compute

2

Working with real devices
• “Memory mapped I/O”: Device control/data

registers mapped to CPU address space
• CPU synchronizes with I/O device:
– Polling
– Interrupts

• “Programmed I/O”: DMA
– CPU execs lw/sw instructions for all data movement

to/from devices
– CPU spends time doing 2 things:

1. Getting data from device to main memory
2. Using data to compute

3

Agenda

• Direct Memory Access (DMA)
• Disks
• Dependability

4

What’s wrong with Programmed I/O?

• Not ideal because …
1. CPU has to execute all transfers, could be doing

other work
2. Device speeds don’t align well with CPU speeds
3. Energy cost of using beefy general-purpose CPU

where simpler hardware would suffice

• Until now CPU has sole control of main
memory

5

PIO vs. DMA

6

Direct Memory Access (DMA)

• Allows I/O devices to directly read/write main
memory

• New Hardware: the DMA Engine
• DMA engine contains registers written by CPU:
– Memory address to place data
– # of bytes
– I/O device #, direction of transfer
– unit of transfer, amount to transfer per burst

7

Operation of a DMA Transfer

8

[From Section 5.1.4 Direct Memory Access in Modern Operating
Systems by Andrew S. Tanenbaum, Herbert Bos, 2014]

DMA: Incoming Data

1. Receive interrupt from device
2. CPU takes interrupt, begins transfer
– Instructs DMA engine/device to place data @

certain address

3. Device/DMA engine handle the transfer
– CPU is free to execute other things

4. Upon completion, Device/DMA engine
interrupt the CPU again

9

DMA: Outgoing Data

1. CPU decides to initiate transfer, confirms that
external device is ready

2. CPU begins transfer
– Instructs DMA engine/device that data is available

@ certain address
3. Device/DMA engine handle the transfer
– CPU is free to execute other things

4. Device/DMA engine interrupt the CPU again
to signal completion

10

DMA: Some new problems

• Where in the memory hierarchy do we plug in

the DMA engine? Two extremes:

– Between L1 and CPU:

• Pro: Free coherency

• Con: Trash the CPU’s working set with transferred data

– Between Last-level cache and main memory:

• Pro: Don’t mess with caches

• Con: Need to explicitly manage coherency

11

DMA: Some new problems

• How do we arbitrate between CPU and DMA
Engine/Device access to memory? Three
options:
– Burst Mode
• Start transfer of data block, CPU cannot access memory

in the meantime
– Cycle Stealing Mode
• DMA engine transfers a byte, releases control, then

repeats - interleaves processor/DMA engine accesses
– Transparent Mode
• DMA transfer only occurs when CPU is not using the

system bus
12

Agenda

• Direct Memory Access (DMA)
• Disks
• Dependability

13

Computer Memory Hierarchy

14Today

Magnetic Disk – common I/O device
• A kind of computer memory

– Information stored by magnetizing ferrite material on surface of
rotating disk
• similar to tape recorder except digital rather than analog data

• A type of non-volatile storage
– retains its value without applying power to disk.

• Magnetic Disk
1. Hard Disk Drives (HDD) – faster, more dense, non-removable.

• Purpose in computer systems (Hard Drive):
1. Working file system + long-term backup for files
2. Secondary “backing store” for main-memory. Large, inexpensive,

slow level in the memory hierarchy (virtual memory)

15

Photo of Disk Head, Arm, Actuator

Arm

Head

Spindle

16

Disk Device Terminology

• Several platters, with information recorded magnetically on both
surfaces (usually)

• Bits recorded in tracks, which in turn divided into sectors (e.g.,
512 Bytes)

• Actuator moves head (end of arm) over track (“seek”), wait for
sector rotate under head, then read or write

Outer
Track

Inner
TrackSector

Actuator

HeadArm Platter

17

Hard Drives are Sealed. Why?
• The closer the head to the disk, the

smaller the “spot size” and thus the
denser the recording.
– Measured in Gbit/in^2
– ~900 Gbit/in^2 is state of the art
– Started out at 2 Kbit/in^2
– ~450,000,000x improvement in ~60

years
• Disks are sealed to keep the dust

out.
– Heads are designed to “fly” at around

3-20nm above the surface of the disk.
– 99.999% of the head/arm weight is

supported by the air bearing force (air
cushion) developed between the disk
and the head.

18

3-
20nm

Disk Device Performance (1/2)

• Disk Access Time = Seek Time + Rotation Time + Transfer
Time + Controller Overhead
– Seek Time = time to position the head assembly at the proper cylinder
– Rotation Time = time for the disk to rotate to the point where the first

sectors of the block to access reach the head
– Transfer Time = time taken by the sectors of the block and any gaps

between them to rotate past the head

Platter

Arm

Actuator

HeadSectorInner
Track

Outer
Track ControllerSpindle

19

Disk Device Performance (2/2)

• Average values to plug into the formula:
• Rotation Time: Average distance of sector from

head?
– 1/2 time of a rotation

• 7200 Revolutions Per Minute => 120 Rev/sec
• 1 revolution = 1/120 sec => 8.33 milliseconds
• 1/2 rotation (revolution) => 4.17 ms

• Seek time: Average no. tracks to move arm?
– Number of tracks/ 3
– Then, seek time = number of tracks moved × time to move

across one track

20

But wait!

• Performance estimates are different in
practice:

• Many disks have on-disk caches, which are
completely hidden from the outside world
– Previous formula completely replaced with on-

disk cache access time

21

Where does Flash memory come in?
• ~15 years ago: Microdrives and Flash

memory (e.g., CompactFlash) went
head-to-head
– Both non-volatile (retains contents without

power supply)
– Flash benefits: lower power, no crashes

(no moving parts, need to spin µdrives
up/down)

– Disk cost = fixed cost of motor + arm
mechanics, but actual magnetic media cost
very low

– Flash cost = most cost/bit of flash chips
– Over time, cost/bit of flash came down,

became cost competitive

22

Flash Memory / SSD Technology

• NMOS transistor with an additional conductor between gate and source/drain which
“traps” electrons. The presence/absence is a 1 or 0

• Memory cells can withstand a limited number of program-erase cycles. Controllers use a
technique called wear leveling to distribute writes as evenly as possible across all the flash
blocks in the SSD.

23

Flash Memory in Smart Phones

24

iPhone 7: up to 256 GB

Flash Memory in Laptops – Solid State
Drive (SSD)

25

capacities up to 4TB

HDD vs SSD speed

26

Question
• We have the following disk:
– 15000 Tracks, 1 ms to cross 1000 Tracks
– 15000 RPM = 4 ms per rotation
– Want to copy 1 MB, transfer rate of 1000 MB/s
– 1 ms controller processing time

• What is the access time using our model?

Disk Access Time = Seek Time + Rotation Time + Transfer Time + Controller
Processing Time

27

A B C D E
10.5 ms 9 ms 8.5 ms 11.4 ms 12 ms

Question

• We have the following disk:
– 15000 Cylinders, 1 ms to cross 1000 Cylinders
– 15000 RPM = 4 ms per rotation
– Want to copy 1 MB, transfer rate of 1000 MB/s
– 1 ms controller processing time

• What is the access time?
Seek = # cylinders/3 * time = 15000/3 * 1ms/1000 cylinders = 5ms
Rotation = time for ½ rotation = 4 ms / 2 = 2 ms
Transfer = Size / transfer rate = 1 MB / (1000 MB/s) = 1 ms
Controller = 1 ms
Total = 5 + 2 + 1 + 1 = 9 ms

28

Agenda

• Direct Memory Access (DMA)
• Disks
• Dependability

29

Great Idea #6:
Dependability via Redundancy

• Redundancy so that a failing piece doesn’t
make the whole system fail

30

1+1=2 1+1=2 1+1=1

1+1=2
2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy

Great Idea #6:
Dependability via Redundancy

• Applies to everything from datacenters to memory
– Redundant datacenters so that can lose 1 datacenter but

Internet service stays online
– Redundant routes so can lose nodes but Internet doesn’t fail
– Redundant disks so that can lose 1 disk but not lose data

(Redundant Arrays of Independent Disks/RAID)
– Redundant memory bits of so that can lose 1 bit but no data

(Error Correcting Code/ECC Memory)

31

Dependability

• Fault: failure of a
component
– May or may not lead to

system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration

32

Dependability via Redundancy:
Time vs. Space

• Spatial Redundancy – replicated data or check
information or hardware to handle hard and
soft (transient) failures

• Temporal Redundancy – redundancy in time
(retry) to handle soft (transient) failures

33

Dependability Measures
• Reliability: Mean Time To Failure (MTTF)
• Service interruption: Mean Time To Repair (MTTR)
• Mean time between failures (MTBF)
– MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)
• Improving Availability
– Increase MTTF: More reliable hardware/software + Fault

Tolerance
– Reduce MTTR: improved tools and processes for diagnosis

and repair

34

Understanding MTTF

35

Probability
of Failure

1

Time

Understanding MTTF

36

Probability
of Failure

1

TimeMTTF

1/3 2/3

Availability Measures

• Availability = MTTF / (MTTF + MTTR) as %
– MTTF, MTBF usually measured in hours

• Since hope rarely down, shorthand is
“number of 9s of availability per year”

• 1 nine: 90% => 36 days of repair/year
• 2 nines: 99% => 3.6 days of repair/year
• 3 nines: 99.9% => 526 minutes of repair/year
• 4 nines: 99.99% => 53 minutes of repair/year
• 5 nines: 99.999% => 5 minutes of repair/year

37

Reliability Measures
• Another is average number of failures per year:

Annualized Failure Rate (AFR)
– E.g., 1000 disks with 100,000 hour MTTF
– 365 days * 24 hours = 8760 hours
– (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed

disks per year on average
– 87.6/1000 = 8.76% annual failure rate

• Google’s 2007 study* found that actual AFRs for
individual drives ranged from 1.7% for first year
drives to over 8.6% for three-year old drives

38

*research.google.com/archive/disk_failures.pdf

Dependability Design Principle

• Design Principle: No single points of failure
– “Chain is only as strong as its weakest link”

• Dependability Corollary of Amdahl’s Law
– Doesn’t matter how dependable you make one

portion of system
– Dependability limited by part you do not improve

39

Error Detection/ Correction Codes
• Memory systems generate errors (accidentally

flipped-bits)
– DRAMs store very little charge per bit
– “Soft” errors occur occasionally when cells are struck by

alpha particles or other environmental upsets
– “Hard” errors can occur when chips permanently fail
– Problem gets worse as memories get denser and larger

• Memories protected against failures with EDC/ECC
• Extra bits are added to each data-word
– Used to detect and/or correct faults in the memory system
– Each data word value mapped to unique code word
– A fault changes valid code word to invalid one, which can

be detected
40

Block Code Principles
• Hamming distance = difference in # of bits
• p = 011011, q = 001111, Ham. distance (p,q) = 2
• p = 011011,

q = 110001,
distance (p,q) = ?

• Can think of extra bits as creating
a code with the data

• What if minimum distance
between members of code is 2
and get a 1-bit error? Richard Hamming, 1915-98

Turing Award Winner
41

Parity: Simple Error-Detection Coding
• Each data value, before it is

written to memory is “tagged”
with an extra bit to force the
stored word to have even
parity:

• Each word, as it is read from
memory is “checked” by
finding its parity (including
the parity bit).

b7b6b5b4b3b2b1b0

+

b7b6b5b4b3b2b1b0 p

+

c• Minimum Hamming distance of parity code is 2

• A non-zero parity check indicates an error occurred:
– 2 errors (on different bits) are not detected

– nor any even number of errors, just odd numbers of errors are detected

42

p

Parity Example
• Data 0101 0101
• 4 ones, even parity now
• Write to memory:

0101 0101 0
to keep parity even

• Data 0101 0111
• 5 ones, odd parity now
• Write to memory:

0101 0111 1
to make parity even

• Read from memory
0101 0101 0

• 4 ones => even parity,
so no error

• Read from memory
1101 0101 0

• 5 ones => odd parity,
so error

• What if error in parity
bit?

43

Suppose Want to Correct 1 Error?

• Richard Hamming came up with simple to

understand mapping to allow Error Correction at

minimum distance of 3

– Single error correction, double error detection

• Called “Hamming ECC”

– Worked weekends on relay computer with unreliable

card reader, frustrated with manual restarting

– Got interested in error correction; published 1950

– R. W. Hamming, “Error Detecting and Correcting

Codes,” The Bell System Technical Journal, Vol. XXVI,

No 2 (April 1950) pp 147-160.

44

Detecting/Correcting Code Concept

• Detection: bit pattern fails codeword check
• Correction: map to nearest valid code word

Space of possible bit patterns (2N)

Sparse population of code words (2M << 2N)
- with identifiable signature

Error changes bit pattern to
non-code

45

Hamming Distance: 8 code words

46

Hamming Distance 2: Detection
Detect Single Bit Errors

47

• No 1 bit error goes to another valid codeword
• ½ codewords are valid

Invalid
Codewords

Hamming Distance 3: Correction
Correct Single Bit Errors, Detect Double Bit Errors

48

• No 2 bit error goes to another valid codeword; 1 bit error near
• 1/4 codewords are valid

Nearest
000

(one 1)

Nearest
111
(one 0)

Administrivia
• Final Exam
– Tuesday, June 26, 2017, 9:00-11:00
– Location: Teaching Center 301 + 302
– THREE cheat sheets (MT1, MT2, post-MT2)
• Hand-written by you, English, A4

• Project 4 published
• HW 7 published

49

Hamming Error Correction Code

• Use of extra parity bits to allow the position
identification of a single error

1. Mark all bit positions that are powers of 2 as
parity bits (positions 1, 2, 4, 8, 16, …)
– Start numbering bits at 1 at left (not at 0 on right)

2. All other bit positions are data bits
(positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, …)

3. Each data bit is covered by 2 or more parity bits

50

Hamming ECC
4. The position of parity bit determines sequence

of data bits that it checks
• Bit 1 (00012): checks bits (1,3,5,7,9,11,...)
– Bits with least significant bit of address = 1

• Bit 2 (00102): checks bits (2,3,6,7,10,11,14,15,…)
– Bits with 2nd least significant bit of address = 1

• Bit 4 (01002): checks bits (4-7, 12-15, 20-23, ...)
– Bits with 3rd least significant bit of address = 1

• Bit 8 (10002): checks bits (8-15, 24-31, 40-47 ,...)
– Bits with 4th least significant bit of address = 1

51

Graphic of Hamming Code

• http://en.wikipedia.org/wiki/Hamming_code
52

http://en.wikipedia.org/wiki/Hamming_code

Hamming ECC
5. Set parity bits to create even parity for each

group
• A byte of data: 10011010
• Create the coded word, leaving spaces for the

parity bits:
• _ _ 1 _ 0 0 1 _ 1 0 1 0

0 0 0 0 0 0 0 0 0 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2

• Calculate the parity bits
53

Hamming ECC
• Position 1 checks bits 1,3,5,7,9,11 (bold):

? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a _:
_ _ 1 _ 0 0 1 _ 1 0 1 0

• Position 2 checks bits 2,3,6,7,10,11 (bold):
0 ? 1 _ 0 0 1 _ 1 0 1 0. set position 2 to a _:
0 _ 1 _ 0 0 1 _ 1 0 1 0

• Position 4 checks bits 4,5,6,7,12 (bold):
0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4 to a _:
0 1 1 _ 0 0 1 _ 1 0 1 0

• Position 8 checks bits 8,9,10,11,12:
0 1 1 1 0 0 1 ? 1 0 1 0. set position 8 to a _:
0 1 1 1 0 0 1 _ 1 0 1 0

54

Hamming ECC
• Position 1 checks bits 1,3,5,7,9,11:

? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a 0:
0 _ 1 _ 0 0 1 _ 1 0 1 0

• Position 2 checks bits 2,3,6,7,10,11:
0 ? 1 _ 0 0 1 _ 1 0 1 0. set position 2 to a 1:
0 1 1 _ 0 0 1 _ 1 0 1 0

• Position 4 checks bits 4,5,6,7,12:
0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4 to a 1:
0 1 1 1 0 0 1 _ 1 0 1 0

• Position 8 checks bits 8,9,10,11,12:
0 1 1 1 0 0 1 ? 1 0 1 0. set position 8 to a 0:
0 1 1 1 0 0 1 0 1 0 1 0

55

Hamming ECC
• Final code word: 011100101010
• Data word: 1 001 1010

56

Hamming ECC Error Check

• Suppose receive
011100101110

0 1 1 1 0 0 1 0 1 1 1 0

57

Hamming ECC Error Check

• Suppose receive
011100101110

58

Hamming ECC Error Check

• Suppose receive
011100101110
0 1 0 1 1 1 √
11 01 11 X-Parity 2 in error

1001 0 √
01110 X-Parity 8 in error

• Implies position 8+2=10 is in error
011100101110

59

Hamming ECC Error Correct

• Flip the incorrect bit …
011100101010

60

Hamming ECC Error Correct

• Suppose receive
011100101010
0 1 0 1 1 1 √
11 01 01 √

1001 0 √
01010 √

61

Hamming Error Correcting Code
• Overhead involved in single error-correction code
• Let p be total number of parity bits and d number of data

bits in p + d bit word
• If p error correction bits are to point to error bit (p + d cases)

+ indicate that no error exists (1 case), we need:
2p >= p + d + 1,

thus p >= log(p + d + 1)
for large d, p approaches log(d)

• 8 bits data => d = 8, 2p = p + 8 + 1 => p = 4
• 16 data => 5 parity,

32 data => 6 parity,
64 data => 7 parity

62

Hamming Single-Error Correction,
Double-Error Detection (SEC/DED)

• Adding extra parity bit covering the entire word provides
double error detection as well as single error correction

1 2 3 4 5 6 7 8
p1 p2 d1 p3 d2 d3 d4 p4

• Hamming parity bits H (p1 p2 p3) are computed (even parity as
usual) plus the even parity over the entire word, p4:
H=0 p4=0, no error

H≠0 p4=1, correctable single error (odd parity if 1 error =>
p4=1)
H≠0 p4=0, double error occurred (even parity if 2 errors=>
p4=0)

H=0 p4=1, single error occurred in p4 bit, not in rest of word
Typical modern codes in DRAM memory systems:

64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).
63

Hamming Single
Error Correction
+ Double
Error Detection

64

1 bit error (one 1)
Nearest 0000

1 bit error (one 0)
Nearest 1111

2 bit error
(two 0s, two 1s)

Halfway
Between Both

Hamming Distance = 4

What if More Than 2-Bit Errors?

• Network transmissions, disks, distributed
storage common failure mode is bursts of bit
errors, not just one or two bit errors
– Contiguous sequence of B bits in which first, last and any

number of intermediate bits are in error
– Caused by impulse noise or by fading in wireless
– Effect is greater at higher data rates

65

Cyclic Redundancy Check

66

Simple example: Parity Check Block

10011010
01101100
11110000
00101101
11011100
00111100
11111100
00001100

00111011

Data

Check
00000000 0 = Check!

10011010
01101100
11110000
00000000
11011100
00111100
11111100
00001100

00111011
00101101 Not 0 = Fail!

Cyclic Redundancy Check

• Parity codes not powerful enough to detect long runs
of errors (also known as burst errors)

• Better Alternative: Reed-Solomon Codes
– Used widely in CDs, DVDs, Magnetic Disks

– RS(255,223) with 8-bit symbols: each codeword contains
255 code word bytes (223 bytes are data and 32 bytes are
parity)

– For this code: n = 255, k = 223, s = 8, 2t = 32, t = 16

– Decoder can correct any errors in up to 16 bytes anywhere
in the codeword

67

Cyclic Redundancy Check
11010011101100 000 <--- input right padded by 3 bits
1011 <--- divisor
01100011101100 000 <--- result
1011 <--- divisor
00111011101100 000
1011

00010111101100 000
1011

00000001101100 000 <--- skip leading zeros
1011

00000000110100 000
1011

00000000011000 000
1011

00000000001110 000
1011

00000000000101 000
101 1

00000000000000 100 <--- remainder

68

14 data bits 3 check bits 17 bits total

3 bit CRC using the
polynomial x3 + x + 1
(divide by 1011 to get remainder)

Didn’t finish lecture!

• Read and understand:
– the rest of the lecture material!
– P&H 5.5 “Dependable Memory Hierarchy”

• Will be part of the final!

69

