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Review: I/O
• “Memory mapped I/O”:  Device control/data 

registers mapped to CPU address space
• CPU synchronizes with I/O device:
– Polling
– Interrupts

• “Programmed I/O”:
– CPU execs lw/sw instructions for all data movement 

to/from devices
– CPU spends time doing 2 things:

1. Getting data from device to main memory
2. Using data to compute
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Working with real devices
• “Memory mapped I/O”:  Device control/data 

registers mapped to CPU address space
• CPU synchronizes with I/O device:
– Polling
– Interrupts

• “Programmed I/O”: DMA
– CPU execs lw/sw instructions for all data movement 

to/from devices
– CPU spends time doing 2 things:

1. Getting data from device to main memory
2. Using data to compute
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Agenda

• Direct Memory Access (DMA)
• Disks
• Dependability
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What’s wrong with Programmed I/O?

• Not ideal because …
1. CPU has to execute all transfers, could be doing 

other work
2. Device speeds don’t align well with CPU speeds
3. Energy cost of using beefy general-purpose CPU 

where simpler hardware would suffice

• Until now CPU has sole control of main 
memory
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PIO vs. DMA
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Direct Memory Access (DMA)

• Allows I/O devices to directly read/write main 
memory

• New Hardware: the DMA Engine
• DMA engine contains registers written by CPU:
– Memory address to place data
– # of bytes
– I/O device #, direction of transfer
– unit of transfer, amount to transfer per burst
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Operation of a DMA Transfer
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[From Section 5.1.4 Direct Memory Access in Modern Operating 
Systems by Andrew S. Tanenbaum, Herbert Bos, 2014]



DMA: Incoming Data

1. Receive interrupt from device
2. CPU takes interrupt, begins transfer
– Instructs DMA engine/device to place data @ 

certain address

3. Device/DMA engine handle the transfer
– CPU is free to execute other things

4. Upon completion, Device/DMA engine 
interrupt the CPU again
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DMA: Outgoing Data

1. CPU decides to initiate transfer, confirms that 
external device is ready

2. CPU begins transfer
– Instructs DMA engine/device that data is available 

@ certain address
3. Device/DMA engine handle the transfer
– CPU is free to execute other things

4. Device/DMA engine interrupt the CPU again 
to signal completion
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DMA: Some new problems

• Where in the memory hierarchy do we plug in 

the DMA engine? Two extremes:

– Between L1 and CPU:

• Pro: Free coherency 

• Con: Trash the CPU’s working set with transferred data

– Between Last-level cache and main memory:

• Pro: Don’t mess with caches

• Con: Need to explicitly manage coherency
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DMA: Some new problems

• How do we arbitrate between CPU and DMA 
Engine/Device access to memory? Three 
options:
– Burst Mode
• Start transfer of data block, CPU cannot access memory 

in the meantime
– Cycle Stealing Mode
• DMA engine transfers a byte, releases control, then 

repeats - interleaves processor/DMA engine accesses
– Transparent Mode
• DMA transfer only occurs when CPU is not using the 

system bus
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Agenda

• Direct Memory Access (DMA)
• Disks
• Dependability
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Computer Memory Hierarchy
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Magnetic Disk – common I/O device
• A kind of computer memory

– Information stored by magnetizing ferrite material on surface of 
rotating disk
• similar to tape recorder except digital rather than analog data

• A type of non-volatile storage
– retains its value without applying power to disk.

• Magnetic Disk
1. Hard Disk Drives  (HDD) – faster, more dense, non-removable. 

• Purpose in computer systems (Hard Drive):
1. Working file system + long-term backup for files
2. Secondary “backing store” for main-memory.  Large, inexpensive, 

slow level in the memory hierarchy (virtual memory)
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Disk Device Terminology

• Several platters, with information recorded magnetically on both 
surfaces (usually)

• Bits recorded in tracks, which in turn divided into sectors (e.g., 
512 Bytes)

• Actuator moves head (end of arm) over track (“seek”), wait for 
sector rotate under head, then read or write

Outer
Track

Inner
TrackSector

Actuator

HeadArm Platter
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Hard Drives are Sealed. Why?
• The closer the head to the disk, the 

smaller the “spot size” and thus the 
denser the recording.  
– Measured in Gbit/in^2  
– ~900 Gbit/in^2 is state of the art
– Started out at 2 Kbit/in^2
– ~450,000,000x improvement in ~60 

years
• Disks are sealed to keep the dust 

out.
– Heads are designed to “fly” at around 

3-20nm above the surface of the disk.
– 99.999% of the head/arm weight is 

supported by the air bearing force (air 
cushion) developed between the disk 
and the head.
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Disk Device Performance (1/2)

• Disk Access Time = Seek Time + Rotation Time + Transfer 
Time + Controller Overhead
– Seek Time = time to position the head assembly at the proper cylinder
– Rotation Time = time for the disk to rotate to the point where the first 

sectors of the block to access reach the head 
– Transfer Time = time taken by the sectors of the block and any gaps 

between them to rotate past the head

Platter

Arm

Actuator

HeadSectorInner
Track

Outer
Track ControllerSpindle
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Disk Device Performance (2/2)

• Average values to plug into the formula:
• Rotation Time: Average distance of sector from 

head?
– 1/2 time of a rotation

• 7200 Revolutions Per Minute => 120 Rev/sec
• 1 revolution = 1/120 sec => 8.33 milliseconds
• 1/2 rotation (revolution) => 4.17 ms

• Seek time: Average no. tracks to move arm?
– Number of tracks/ 3 
– Then, seek time = number of tracks moved × time to move 

across one track
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But wait! 

• Performance estimates are different in 
practice:

• Many disks have on-disk caches, which are 
completely hidden from the outside world
– Previous formula completely replaced with on-

disk cache access time
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Where does Flash memory come in?
• ~15 years ago: Microdrives and Flash 

memory (e.g., CompactFlash) went 
head-to-head
– Both non-volatile (retains contents without 

power supply)
– Flash benefits: lower power, no crashes

(no moving parts, need to spin µdrives 
up/down)

– Disk cost = fixed cost of motor + arm 
mechanics, but actual magnetic media cost 
very low

– Flash cost = most cost/bit of flash chips
– Over time, cost/bit of flash came down, 

became cost competitive
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Flash Memory / SSD Technology

• NMOS transistor with an additional conductor between gate and source/drain which 
“traps” electrons. The presence/absence is a 1 or 0

• Memory cells can withstand a limited number of program-erase cycles. Controllers use a 
technique called wear leveling to distribute writes as evenly as possible across all the flash 
blocks in the SSD. 
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Flash Memory in Smart Phones
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iPhone 7: up to 256 GB



Flash Memory in Laptops – Solid State 
Drive (SSD)
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capacities up to 4TB



HDD vs SSD speed
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Question
• We have the following disk:
– 15000 Tracks, 1 ms to cross 1000 Tracks
– 15000 RPM = 4 ms per rotation
– Want to copy 1 MB, transfer rate of 1000 MB/s
– 1 ms controller processing time

• What is the access time using our model?

Disk Access Time = Seek Time + Rotation Time + Transfer Time + Controller 
Processing Time
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A B C D E
10.5 ms 9 ms 8.5 ms 11.4 ms 12 ms



Question

• We have the following disk:
– 15000 Cylinders, 1 ms to cross 1000 Cylinders
– 15000 RPM = 4 ms per rotation
– Want to copy 1 MB, transfer rate of 1000 MB/s
– 1 ms controller processing time

• What is the access time?
Seek = # cylinders/3 * time = 15000/3 * 1ms/1000 cylinders = 5ms
Rotation = time for ½ rotation = 4 ms / 2 = 2 ms
Transfer = Size / transfer rate = 1 MB / (1000 MB/s) = 1 ms
Controller = 1 ms
Total = 5 + 2 + 1 + 1 = 9 ms
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Agenda

• Direct Memory Access (DMA)
• Disks
• Dependability
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Great Idea #6: 
Dependability via Redundancy

• Redundancy so that a failing piece doesn’t 
make the whole system fail
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1+1=2 1+1=2 1+1=1

1+1=2
2 of 3 agree

FAIL!

Increasing transistor density reduces the cost of redundancy



Great Idea #6: 
Dependability via Redundancy

• Applies to everything from datacenters to memory
– Redundant datacenters so that can lose 1 datacenter but 

Internet service stays online
– Redundant routes so can lose nodes but Internet doesn’t fail
– Redundant disks so that can lose 1 disk but not lose data 

(Redundant Arrays of Independent Disks/RAID)
– Redundant memory bits of so that can lose 1 bit but no data 

(Error Correcting Code/ECC Memory)
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Dependability

• Fault: failure of a 
component
– May or may not lead to 

system failure

Service accomplishment
Service delivered

as specified

Service interruption
Deviation from

specified service

FailureRestoration
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Dependability via Redundancy: 
Time vs. Space

• Spatial Redundancy – replicated data or check 
information or hardware to handle hard and 
soft (transient) failures

• Temporal Redundancy – redundancy in time 
(retry) to handle soft (transient) failures
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Dependability Measures
• Reliability: Mean Time To Failure (MTTF)
• Service interruption: Mean Time To Repair (MTTR)
• Mean time between failures (MTBF)
– MTBF = MTTF + MTTR

• Availability = MTTF / (MTTF + MTTR)
• Improving Availability
– Increase MTTF: More reliable hardware/software + Fault 

Tolerance
– Reduce MTTR: improved tools and processes for diagnosis 

and repair

34



Understanding MTTF
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Probability
of Failure

1

Time



Understanding MTTF
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Probability
of Failure

1

TimeMTTF

1/3 2/3



Availability Measures

• Availability = MTTF / (MTTF + MTTR) as %
– MTTF, MTBF usually measured in hours

• Since hope rarely down, shorthand is 
“number of 9s of availability per year”

• 1 nine: 90% => 36 days of repair/year
• 2 nines: 99% => 3.6 days of repair/year
• 3 nines: 99.9% => 526 minutes of repair/year
• 4 nines: 99.99% => 53 minutes of repair/year
• 5 nines: 99.999% => 5 minutes of repair/year
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Reliability Measures
• Another is average number of failures per year: 

Annualized Failure Rate (AFR)
– E.g., 1000 disks with 100,000 hour MTTF 
– 365 days * 24 hours = 8760 hours
– (1000 disks * 8760 hrs/year) / 100,000 = 87.6 failed 

disks per year on average
– 87.6/1000 = 8.76% annual failure rate

• Google’s 2007 study* found that actual AFRs for 
individual drives ranged from 1.7% for first year 
drives to over 8.6% for three-year old drives
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Dependability Design Principle

• Design Principle: No single points of failure
– “Chain is only as strong as its weakest link”

• Dependability Corollary of Amdahl’s Law
– Doesn’t matter how dependable you make one 

portion of system
– Dependability limited by part you do not improve
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Error Detection/ Correction Codes
• Memory systems generate errors (accidentally 

flipped-bits)
– DRAMs store very little charge per bit
– “Soft” errors occur occasionally when cells are struck by 

alpha particles or other environmental upsets
– “Hard” errors can occur when chips permanently fail
– Problem gets worse as memories get denser and larger

• Memories protected against failures with EDC/ECC
• Extra bits are added to each data-word
– Used to detect and/or correct faults in the memory system
– Each data word value mapped to unique code word
– A fault changes valid code word to invalid one, which can 

be detected
40



Block Code Principles
• Hamming distance = difference in # of bits
• p = 011011, q = 001111, Ham. distance (p,q) = 2
• p = 011011, 

q = 110001, 
distance (p,q) = ?

• Can think of extra bits as creating
a code with the data

• What if minimum distance 
between members of code is 2
and get a 1-bit error? Richard Hamming, 1915-98

Turing Award Winner 
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Parity: Simple Error-Detection Coding
• Each data value, before it is 

written to memory is “tagged” 
with an extra bit to force the 
stored word to have even 
parity:

• Each word, as it is read from 
memory is “checked” by 
finding its parity (including 
the parity bit).  

b7b6b5b4b3b2b1b0

+

b7b6b5b4b3b2b1b0   p

+

c• Minimum Hamming distance of parity code is 2

• A non-zero parity check indicates an error occurred:
– 2 errors (on different bits) are not detected

– nor any even number of errors, just odd numbers of errors are detected
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Parity Example
• Data 0101 0101
• 4 ones, even parity now
• Write to memory:

0101 0101 0 
to keep parity even

• Data 0101 0111
• 5 ones, odd parity now
• Write to memory:

0101 0111 1
to make parity even

• Read from memory
0101 0101 0

• 4 ones => even parity, 
so no error

• Read from memory
1101 0101 0

• 5 ones => odd parity, 
so error

• What if error in parity 
bit?
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Suppose Want to Correct 1 Error?

• Richard Hamming came up with simple to 

understand mapping to allow Error Correction at 

minimum distance of 3

– Single error correction, double error detection 

• Called “Hamming ECC” 

– Worked weekends on relay computer with unreliable 

card reader, frustrated with manual restarting

– Got interested in error correction; published 1950

– R. W. Hamming, “Error Detecting and Correcting 

Codes,” The Bell System Technical Journal, Vol. XXVI, 

No 2 (April 1950) pp 147-160.
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Detecting/Correcting Code Concept

• Detection: bit pattern fails codeword check
• Correction: map to nearest valid code word

Space of possible bit patterns (2N)

Sparse population of code words (2M << 2N) 
- with identifiable signature

Error changes bit pattern to 
non-code 
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Hamming Distance: 8 code words

46



Hamming Distance 2: Detection
Detect Single Bit Errors
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• No 1 bit error goes to another valid codeword
• ½ codewords are valid

Invalid
Codewords



Hamming Distance 3: Correction
Correct Single Bit Errors, Detect Double Bit Errors
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• No 2 bit error goes to another valid codeword; 1 bit error near
• 1/4 codewords are valid

Nearest 
000

(one 1)

Nearest 
111
(one 0)



Administrivia
• Final Exam
– Tuesday, June 26, 2017, 9:00-11:00
– Location: Teaching Center 301 + 302
– THREE cheat sheets (MT1, MT2, post-MT2)
• Hand-written by you, English, A4

• Project 4 published
• HW 7 published
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Hamming Error Correction Code

• Use of extra parity bits to allow the position 
identification of a single error

1. Mark all bit positions that are powers of 2 as 
parity bits (positions 1, 2, 4, 8, 16, …) 
– Start numbering bits at 1 at left (not at 0 on right)

2. All other bit positions are data bits
(positions 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, …)

3. Each data bit is covered by 2 or more parity bits 
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Hamming ECC
4. The position of parity bit determines sequence 

of data bits that it checks
• Bit 1 (00012): checks bits (1,3,5,7,9,11,...)
– Bits with least significant bit of address = 1

• Bit 2 (00102): checks  bits (2,3,6,7,10,11,14,15,…)
– Bits with 2nd least significant bit of address = 1

• Bit 4 (01002): checks bits (4-7, 12-15, 20-23, ...)
– Bits with 3rd least significant bit of address = 1 

• Bit 8 (10002): checks bits (8-15, 24-31, 40-47 ,...)
– Bits with 4th least significant bit of address = 1 
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Graphic of Hamming Code

• http://en.wikipedia.org/wiki/Hamming_code
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Hamming ECC
5. Set parity bits to create even parity for each 

group
• A byte of data: 10011010
• Create the coded word, leaving spaces for the 

parity bits:
• _ _ 1 _ 0 0 1 _ 1 0 1 0

0 0 0 0 0 0 0 0 0 1 1 1
1 2 3 4 5 6 7 8 9 0 1 2

• Calculate the parity bits
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Hamming ECC
• Position 1 checks bits 1,3,5,7,9,11 (bold): 

? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a _: 
_ _ 1 _ 0 0 1 _ 1 0 1 0 

• Position 2 checks bits 2,3,6,7,10,11 (bold):
0 ? 1 _ 0 0 1 _ 1 0 1 0. set position 2 to a _: 
0 _ 1 _ 0 0 1 _ 1 0 1 0 

• Position 4 checks bits 4,5,6,7,12 (bold):
0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4 to a _: 
0 1 1 _ 0 0 1 _ 1 0 1 0

• Position 8 checks bits 8,9,10,11,12:
0 1 1 1 0 0 1 ? 1 0 1 0. set position 8 to a _: 
0 1 1 1 0 0 1 _ 1 0 1 0
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Hamming ECC
• Position 1 checks bits 1,3,5,7,9,11: 

? _ 1 _ 0 0 1 _ 1 0 1 0. set position 1 to a 0:
0 _ 1 _ 0 0 1 _ 1 0 1 0 

• Position 2 checks bits 2,3,6,7,10,11:
0 ? 1 _ 0 0 1 _ 1 0 1 0. set position 2 to a 1:
0 1 1 _ 0 0 1 _ 1 0 1 0 

• Position 4 checks bits 4,5,6,7,12:
0 1 1 ? 0 0 1 _ 1 0 1 0. set position 4 to a 1:
0 1 1 1 0 0 1 _ 1 0 1 0

• Position 8 checks bits 8,9,10,11,12:
0 1 1 1 0 0 1 ? 1 0 1 0. set position 8 to a 0: 
0 1 1 1 0 0 1 0 1 0 1 0
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Hamming ECC
• Final code word: 011100101010
• Data word: 1   001  1010
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Hamming ECC Error Check

• Suppose receive 
011100101110

0 1 1 1 0 0 1 0 1 1 1 0
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Hamming ECC Error Check

• Suppose receive 
011100101110
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Hamming ECC Error Check

• Suppose receive 
011100101110
0 1 0 1 1 1  √
11  01  11  X-Parity 2 in error

1001    0 √
01110 X-Parity 8 in error

• Implies position 8+2=10 is in error
011100101110
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Hamming ECC Error Correct

• Flip the incorrect bit …
011100101010
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Hamming ECC Error Correct

• Suppose receive 
011100101010
0 1 0 1 1 1  √
11  01  01  √

1001    0 √
01010 √
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Hamming Error Correcting Code
• Overhead involved in single error-correction code
• Let p be total number of parity bits and d number of data 

bits in p + d bit word
• If p error correction bits are to point to error bit (p + d cases)

+ indicate that no error exists (1 case), we need:
2p >= p + d + 1,

thus p >= log(p + d + 1)
for large d, p approaches log(d)

• 8 bits data => d = 8, 2p = p + 8 + 1 => p = 4
• 16 data => 5 parity, 

32 data => 6 parity, 
64 data => 7 parity
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Hamming Single-Error Correction, 
Double-Error Detection (SEC/DED)

• Adding extra parity bit covering the entire word provides 
double error detection as well as single error correction

1 2 3    4 5    6    7   8
p1 p2 d1 p3 d2 d3 d4   p4

• Hamming parity bits H (p1 p2 p3) are computed (even parity as 
usual) plus the even parity over the entire word, p4:
H=0 p4=0, no error

H≠0 p4=1, correctable single error (odd parity if 1 error => 
p4=1)
H≠0 p4=0, double error occurred (even parity if 2 errors=> 
p4=0)

H=0 p4=1, single error occurred in p4 bit, not in rest of word
Typical modern codes in DRAM memory systems:

64-bit data blocks (8 bytes) with 72-bit code words (9 bytes).
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Hamming Single 
Error Correction 
+ Double 
Error Detection
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1 bit error (one 1)
Nearest 0000

1 bit error (one 0)
Nearest 1111

2 bit error 
(two 0s, two 1s)

Halfway 
Between Both 

Hamming Distance = 4



What if More Than 2-Bit Errors?

• Network transmissions, disks, distributed 
storage  common failure mode is bursts of bit 
errors, not just one or two bit errors
– Contiguous sequence of B bits in which first, last and any 

number of intermediate bits are in error
– Caused by impulse noise or by fading in wireless
– Effect is greater at higher data rates
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Cyclic Redundancy Check
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Simple example: Parity Check Block

10011010
01101100
11110000
00101101
11011100
00111100
11111100
00001100

00111011

Data

Check
00000000 0 = Check!

10011010
01101100
11110000
00000000
11011100
00111100
11111100
00001100

00111011
00101101 Not 0 = Fail!



Cyclic Redundancy Check

• Parity codes not powerful enough to detect long runs 
of errors (also known as burst errors)

• Better Alternative: Reed-Solomon Codes
– Used widely in CDs, DVDs, Magnetic Disks

– RS(255,223) with 8-bit symbols: each codeword contains 
255 code word bytes (223 bytes are data and 32 bytes are 
parity)

– For this code: n = 255, k = 223, s = 8, 2t = 32, t = 16

– Decoder can correct any errors in up to 16 bytes anywhere 
in the codeword
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Cyclic Redundancy Check
11010011101100 000 <--- input right padded by 3 bits
1011               <--- divisor
01100011101100 000 <--- result 
1011              <--- divisor
00111011101100 000
1011

00010111101100 000
1011

00000001101100 000 <--- skip leading zeros
1011

00000000110100 000
1011

00000000011000 000
1011

00000000001110 000
1011

00000000000101 000 
101 1

-----------------
00000000000000 100 <--- remainder
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14 data bits 3 check bits 17 bits total

3 bit CRC using the
polynomial x3 + x + 1
(divide by 1011 to get remainder)



Didn’t finish lecture!

• Read and understand: 
– the rest of the lecture material!
– P&H 5.5 “Dependable Memory Hierarchy”

• Will be part of the final!
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