
Discussion 3 – RISC-V
WANG RUOYU

WANGRY@SHANGHAITECH.EDU.CN

Where are we?

Compiler Assembler Linker

Loader Hardware

Assembly Language – RISC-V
ISA: Instruction Set Architecture, has two classes.

RISC: Reduced Instruction Set Computing, e.g. MIPS, RISC-V

CISC: Complex Instruction Set Computing, e.g. x86

RISC-V: One of RISC ISA (Instruction Set Architecture)

What makes a good ISA?
Programmability

Implementation

Compatibility

Variables vs. Registers
RISC-V has 32 registers
◦ Every register is 32-bit.
◦ Have unique name.
◦ We should use its name rather than the number, e.g. s5 rather than x21.
◦ Registers have no type definition, everything is number.

You SHOULD NOT use registers as variables.
◦ Registers are faster but expensive.
◦ Therefore, the number of them are very limited.
◦ Store data in memory, only extract them when you want to use them.

Registers
◦ zero: This register always keep the number of 0

◦ ra: Return address, used in function call.

◦ sp: Stack pointer, used to point the stack top.

◦ s0/fp: Frame pointer, also used in function call, more advanced usage, learn more in CS131 Compiler.

◦ t0-t6: Temporaries, cannot trust them after function call.

◦ s1-s11: Saved, should not change after function call, you should maintain them when write a function.

◦ a0-a1: Function argument and return values, also argument of environment call.
◦ a2-a7: Function argument, used to pass parameters in function call.

Memory
◦ RISC-V does not require word alignment.
◦ But you’d better do this.

◦ sw stands for store word.
◦ sw s2, 4(sp)  store 32 bits (1 word) data into the address store in sp plus 4 bytes.

◦ lw stands for load word.
◦ lw sp, -4(sp)  load 32 bits data from the address (sp – 4) into sp.

◦ There are also sb, sh, sd, lb, etc., but the most useful are these two.

◦ This two instruction use memory on stack.
◦ If you want to use memory on heap, use environment call 9.
◦ sp, s0-s11, ra, which you should maintain them value but need to use now: push them on stack.

Label and Branch
◦ Giving a line name by adding label.

◦ Then, you can go the label by jump or branch.

◦ You can use label in function call, if-else, loop, etc.

◦ Let your label easy to understand, that makes you easy to finish the given

tasks.

Quiz1

Quiz2

Function Call
◦ Caller & Callee

◦ Caller invoke callee.
◦ Callee should make sure he haven’t change caller saved registers.

◦ Steps of function call
◦ Caller put parameters into registers a0-a7.
◦ Caller put next line’s address into ra and jump to the function label. (using jal)
◦ Callee pushes s0-s11, sp onto stack. (attention: ra’s saver is not callee)
◦ Callee execution.
◦ Callee extract value from stack.
◦ Callee jump to ra’s address.

Why?

The Stack’s Condition

	Discussion 3 – RISC-V
	Where are we?
	Assembly Language – RISC-V
	Variables vs. Registers
	Registers
	Memory
	Label and Branch
	Quiz1
	Quiz2
	Function Call
	The Stack’s Condition

