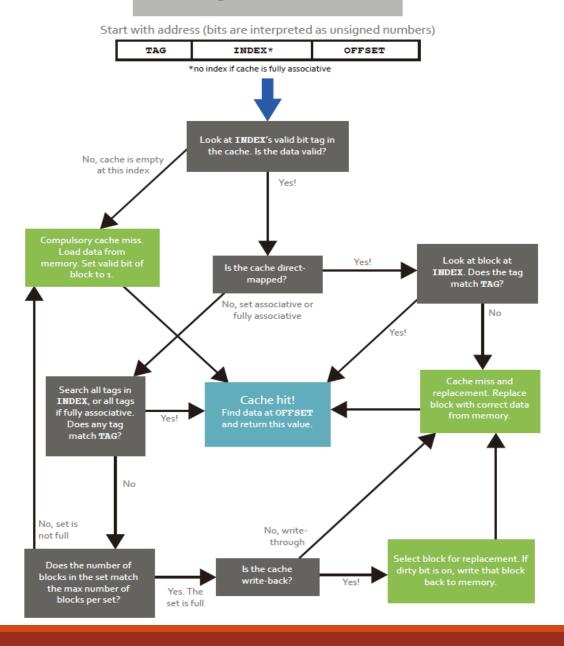
Multilevel Caches

HANG SU

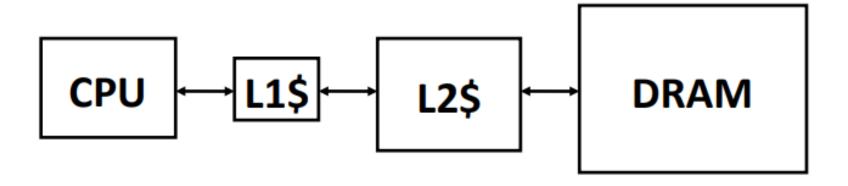
Outline

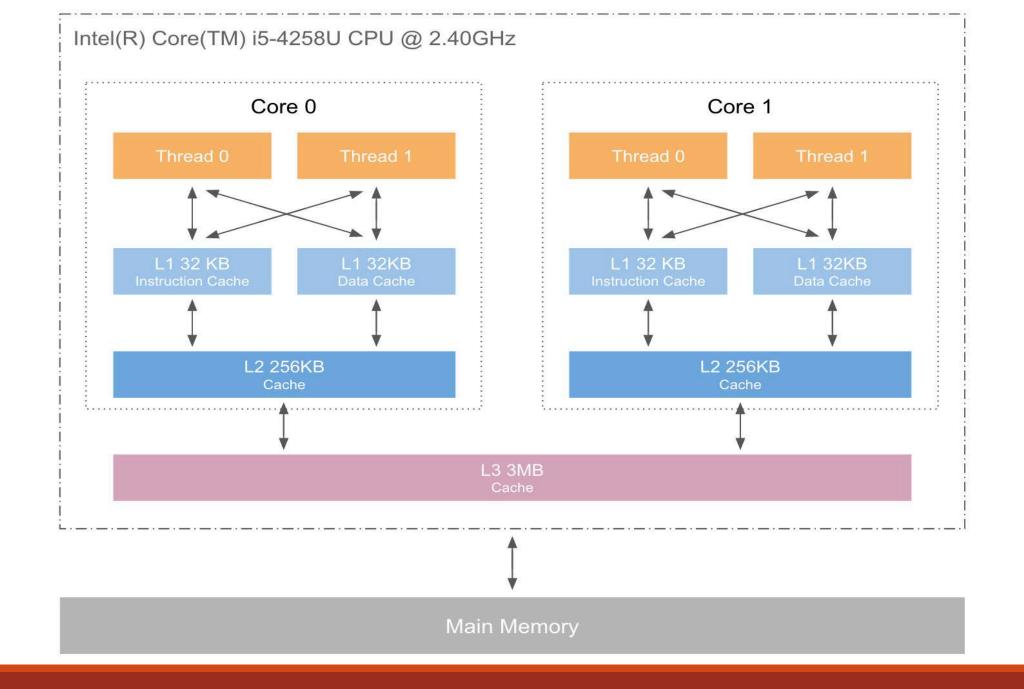

Multilevel Cache

3C's

AMAT

Finding Data in a Cache


Cache Flowchart



Multilevel Caches

Problem: Miss penalty is big

Solution: Use multiple cache levels

3C's

- Compulsory (cold start)
 Insignificant if run a huge amount of instructions
- Capacity
 Cannot contain all accessed data
 Can be solved by an infinite cache
- Conflict
 - Multiple locations map to one
 - Can be solved by ideal fully associative cache of the same size

3C's

- Larger cache size
 - + Reduces capacity and conflict misses
 - Hit time will increase
- Higher associativity
 - + Reduce conflict misses
 - May increase hit time (mux)
- Larger line size
 - + Reduces compulsory and capacity (reload) misses
 - Increases conflict misses and miss penalty

More Misses

Coherence

- Keep the same shared memory for two different processors
- When one writes to memory, invalidates other processors' cache entry
- Coherence miss when working on the same data

Additional capacity miss

Happens in multithreaded processor cores

Local Miss Rate

Global Miss Rate

Relative

$$L_n$$
\$ = $\frac{L_n$ \$ Miss L_n \$ Access = $\frac{L_n$ \$Miss L_{n-1} Miss

Absolute

$$\frac{L_{n} \$ \textit{Miss}}{\textit{Total Access}} = \frac{L_{n} \textit{Miss}}{L_{n-1} \textit{Miss}} \times \cdots \times \frac{L_{1} \textit{Miss}}{\textit{Total Access}} = \frac{L_{n} \textit{Miss}}{\textit{Lotal Access}} = \frac{L_{n} \textit{Miss}}{\textit{Lot$$

AMAT

```
AMAT = Hit time + Miss rate × Miss penalty

= L1 hit time + Local Miss Rate L1 × (

L2 hit time + Local Miss Rate L2 × (

...))
```

Example

	Access Time	Miss Rate
L1 cache	1 ns	10%
L2 cache	5 ns	1%
L3 cache	10 ns	0.2%
Main memory	50 ns	0%

No cache AMAT = 50 ns

L1 cache $AMAT = 1 + 0.1 \times 50 = 6 \text{ ns}$

L1-2 caches AMAT = $1 + 0.1 \times (5 + 0.01 \times 50) = 1.55$ ns

L1-3 caches AMAT = $1 + 0.1 \times (5 + 0.01 \times (10 + 0.002 \times 50)) = 1.5101$ ns

Thanks