Computer Architechture ## Floating Point Discussion Zhongyue Lin linzhy@shanghaitech.edu.cn ## 1.IEEE754(32-bit, single-precision) | 1 | 8 | 23 | |------|----------|-------------| | Sign | Exponent | Significand | Sign Bit: 0 positive, 1 negative Exponent: Biased notation. Bias of single-precision is 127 ($2^{8-1}-1$) Read the exponent and subtract with bias. The reason is that we want easy comparisons of the exponent. (we don't want extract exponent and decode and compare it in two's complement.) The value of bias is 0b01111111 (the first bit is a zero followed by all ones). ## 1.IEEE754(32-bit, single-precision) | 1 | 8 | 23 | |------|----------|-------------| | Sign | Exponent | Significand | Significand: Implicit leading 1: 1.abcd... abcd are the bits in significands from left to right. We want this implicit 1 for more representation range. ## 1.IEEE754(32-bit, single-precision) | Exponent | Significand | Meaning | |----------|-------------|---------------| | 0 | 0 | ±0 | | 0 | non-zero | Denorm number | | 1-254 | anything | Normed number | | 255 | 0 | ±8 | | 255 | non-zero | NaN | Normal Numbers: $(-1)^{Sign} * 2^{Exp-Bias} * 1. Significand_2$ Denorm: $(-1)^{Sign} * 2^{Exp-Bias+1} * 0. Significand_2$ - 1. Due to our implicit leading 1 in significands, there are holes in representing very small numbers, we need Denorm number with exponent all zeros. - 2. There is no implicit leading 1 in denorm and there is a plus one in exponent. | Exponent | Significand | Meaning | |----------|-------------|---------------| | 0 | 0 | ±0 | | 0 | non-zero | Denorm number | | 1-254 | anything | Normed number | | 255 | 0 | <u>+</u> 8 | | 255 | non-zero | NaN | Normal Numbers: $(-1)^{Sign} * 2^{Exp-Bias} * 1. Significand_2$ Denorm: $(-1)^{Sign} * 2^{Exp-Bias+1} * 0.Significand_2$ The smallest positive normed number you get is $2^{1-127} * (0b1.00 ... 00) = 2^{-126}$ The smallest positive denorm number you get is $2^{0-127+1} * (0b0.00 ... 01) = 2^{-149}$. #### 2. Git with Software Fork (Mac && Win) GitKraken (Mac && Win && Linux) # Questions?