
Discussion: RISC-V
YUCHENG@SHANGHAITECH.EDU.CN



RISC-V Registers
◦ In RISC-V, we have two methods of storing data, one of them is main memory, the other is 

through registers.

◦ Registers are much faster than using main memory, but are very limited in space (32-bits). 

◦ Note that you should ALWAYS 

use the named registers

(e.g. s0 rather than x8). 



RISC-V Instructions
◦ Instruction Syntax is rigid:

op dst, src1, src2

1 operator, 3 operands

• op = operation name (“operator”)

• dst = register getting result (“destination”)

• src1 = first register for operation (“source 1”)

• src2 = second register for operation (“source 2”)

◦ Keep hardware simple via regularity

◦ One operation per instruction, at most one instruction per line

◦ Assembly instructions are related to C operations (=, +, -, *, /, &, |, etc.)



Memory
◦ RISC-V does not require word alignment.

◦ But you’d better do this.

◦ sw stands for store word.

◦ sw s2, 4(sp) → store 32 bits (1 word) data into the address store in sp plus 4 bytes.

◦ lw stands for load word.

◦ lw sp, -4(sp) → load 32 bits data from the address (sp – 4) into sp.

◦ This two instruction use memory on stack.

◦ If you want to use memory on heap, use environment call 9.

◦ sp, s0-s11, ra, which you should maintain them value but need to use now: push them on 
stack.



What do the snippets of RISC-V code do? 
Assume we have an array in memory that

contains int* arr = {1,2,3,4,5,6,0}.

Let register s0 hold the address of the

zeroth element in arr. You may assume

integers are four-bytes and our values are

word-aligned.

What do the snippets of RISC-V code do?

Assume that all the instructions are run

one after the other in the same context.



Label and Branch 

◦ Giving a line name by adding label.

◦ Then, you can go the label by jump or branch.

◦ You can use label in function call, if-else, loop, etc

◦ Let your label easy to understand, that makes you easy to finish 

the given tasks.



RISC-V Calling Conventions
◦ Values saved by the caller before jumping to a function using jal

◦ ra: Return address, used in function call.

◦ a0-a1: Function argument and return values, also argument of environment call.

◦ a2-a7: Function argument, used to pass parameters in function call.

◦ t0-t6: Temporaries, cannot trust them after function call.

◦ Values restored by the callee before returning from a function using jalr

◦ sp: Stack pointer. We subtract from sp to create more space and add to free space. The 
stack is mainly used to save (and later restore) the value of registers that may be 
overwritten. 

◦ s0-s11: Saved registers, should not change after function call.



Function Call
◦ Caller & Callee

◦ Caller invoke callee.

◦ Callee should make sure he haven’t change caller saved registers.

◦ Steps of function call

◦ Caller put parameters into registers a0-a7.

◦ Caller put next line’s address into ra and jump to the function label. (using jal)

◦ Callee pushes s0-s11, sp onto stack. (attention: ra’s saver is not callee)

◦ Callee execution.

◦ Callee extract value from stack.

◦ Callee jump to ra’s address.



The Stack’s Condition



Choosing Your Registers
◦ Minimize register footprint

◦ Optimize to reduce number of registers you need to save by choosing which registers to use 
in a function

◦ Only save when you absolutely have to

◦ Function does NOT call another function

◦ Use only t0-t6 and there is nothing to save!

◦ Function calls other function(s)

◦ Values you need throughout go in s0-s11, others go in t0-t6

◦ At each function call, check number arguments and return values for whether you or not 
you need to save


