Discussion 5: SDS

MENGYING WU

Synchronous Digital Systems

Synchronous:

•All operations coordinated by a central clock

Digital:

Represent all values by 1 and 0

•High voltage(V_{dd}) = True = On switch = 1 •

Synchronous Digital Systems consist of two basic types of circuits:
Combinational Logic (CL) circuits

Sequential Logic (SL)

CMOS Transistor Networks

Positive

Off when voltage at Gate is low On when voltage(Gate) > voltage (Threshold) Can pass 0V when Gate is 1V On when voltage at Gate is low Off when voltage(Gate) > voltage (Threshold) Can pass 1V when Gate is 0V

CMOS Networks

Combinational Logic

NOT

AND $A \cdot B$

 $\mathsf{OR} \qquad \mathsf{A} + \mathsf{B}$

Ā

Truth Table

Same as Discrete Mathematics

Single bit input

А	В	С
1	1	0
1	0	1
0	1	1
0	0	0

Multiple bit input

$$\begin{array}{c|cc} A & B & C \\ \hline a_1 a_0 & b_1 b_0 & c_2 c_1 c_0 \end{array}$$

From Truth Table to logical expression

- Sum of Products form (AKA Principal Disjunctive Normal Form in Discrete Mathematics)
 - $\bullet C = A \cdot \overline{B} + \overline{A} \cdot B$
- •This will help you simplify an unknown logic.
- •Also you can use Product of Sums(AKA PCNF) • $C = (A + B) \cdot (\overline{A} + \overline{B})$
- Do not forget to use Laws of Boolean Algebra.

$X \overline{X} = 0$	$X + \overline{X} = 1$	Complementarity
X 0 = 0	X + 1 = 1	Laws of O's and 1's
X 1 = X	X + 0 = X	Identities
X X = X	X + X = X	Idempotent Laws
X Y = Y X	X + Y = Y + X	Commutativity
(X Y) Z = X (Y Z)	(X + Y) + Z = X + (Y + Z)	Associativity
X (Y + Z) = X Y + X Z	X + Y Z = (X + Y) (X + Z)	Distribution
X Y + X = X	(X + Y) X = X	Uniting Theorem
\overline{X} Y + X = X + Y	$(\overline{X} + Y) X = X Y$	Uniting Theorem v. 2
$\overline{XY} = \overline{X} + \overline{Y}$	$\overline{X + Y} = \overline{X} \overline{Y}$	DeMorgan's Law

Representations of Combinational Logic

Gate Diagram

Boolean Expression

Truth Table

$$C = A \cdot \overline{B} + \overline{A} \cdot B$$

А	В	С
1	1	0
1	0	1
0	1	1
0	0	0

Example

$$C = (A + B) \cdot (\overline{A} + B) \cdot B$$

= $(A \cdot \overline{A} + B \cdot \overline{A} + A \cdot B + B \cdot B) \cdot B$
= $(B \cdot (\overline{A} + A) + B) \cdot B$
= $(B + B) \cdot B$
= $B \cdot B$
= B