Discussion 6: ALU & FSM

ZHONGYI CAI

Recall

•Synchronous Digital Systems consist of two basic types of circuits:

Combinational Logic (CL) circuits

-Output is A function of the inputs only, not the history of its execution

-E.g., ALU(add,mul,sll...)

Sequential Logic (SL) circuits

-Circuits that "remember" or store information

-E.g., memories and registers

ALU

Arithmetic operation and Logical operation

•Simplest example: 32bit, 2 function

Activate needed operation and dim others

•S, control

multiplexer

For 4-multiplexer, S is a two bit string

S1	SO	S	е
0	0	00(0)	а
0	1	01(1)	b
1	0	10(2)	С
1	1	11(3)	d

multiplexer

For 4-multiplexer, S is a two bit string

CL delay

Accumulation operation

1+2+3+4...

Operation like accumulation needs to store information

Max Delay

FSM

•A convenient way to conceptualize computation over time

•Start at a state, given an input, follow some edge to another

Input/output

Example

Input : bit string :"011001001110"

What is the output?

Output: 00100000110

