RISC-V Single-Cycle CPU Datapath

Discussion 7

Stages of Execution on Datapath

PC

<

—

Read

rd o
S>> & ' .
= O |rs k2,
SE b= © > ALU L
Eg |t 0 © £
n e > > A o
£ =
imm >
»
& P> o P ¢ P ¢ P» o >
1. Instruction 2. Decode/ 3. Execute 4. Memory 5. Register
Fetch Register Write

Stages of Execution on Datapath

IF Instruction Fetch
« Send address to the instruction memory, and read IMEM at that address.

ID Instruction Decode
« (Generate control signal from the instruction bits, generate the immediate, and read registers
from the RegFile.

EX Execute
* Perform ALU operations, and do branch comparison.

MEM Memory
* Read from or write to the data memory.

WB Writeback
« Write back the PC+4, the result of the ALU operation, or data from memory to the RegFile.

3

Stages of Execution on Datapath

wh
Inst1%:15)| Read Write
Reg! Data . ad PC+4
] (rs1) Datat PC
+4 in 2420] Read » 1
5t{31:0) [t
u Address geaatg Reg2 Rond rel o input A -1 0
(rs2) Dataz 1
Write Read ALU 1
inse(117)| Reg > ALU |Cusput Address
P4 h Instruction {rd) Memory meml 5
ALU M Yy " 2 Data
1 Register File 2.0 0
¢ mm — | Wriee Data /
Write 1) /
— A s Data
Memory
Write
1
= Branch Enable /\
rs2 |\EOMP
si31.7)
mmediate
Generator
ASel
Brun |§;|
! | |
Inst[31:0]
PCSel RegWEN ImmSel Breq |BrLt ALUSel MemRW WBSel

Control Logic

Example 1

« add R R[rd] =R][rsl] + R[rs2], PC=PC +4

PC = PC + 4 Reg[rd] = Reg[rsl] + Reg[rs2]

Inst[11:7]
Inst[19:15

ittty

1 Inst[31:0] clk

RegWriteEnable (RegWEn) ‘

Control logic

Example 2

addi | R[rd] =R[rs1l]+imm, PC=PC+4

B— Reg|]
ataD
—>{pc MEM inst[11:7] |, o\ o Reg[rs1] alu
pc+4 | A — ddrADated o Irs
inst[24: ddrB Dat:L] g
inst[31:20] ImmJ |imm[31:0]
Y
inst[31:0] ImmSel=I RegWEn=1 BSel=1 ALUSel=Add

Control Logic

Example 3

« sw S M[R[rs1]+imm](31:0) = R[rs2](31:0),

pc+4

PC

PC=PC +14
alu
| I Reg|rs1] >AL DMEM 1
MEM Reglrs2 > [PP99 Dpatar of*°
. | mem
inst[24: A
A N
| J \
inst[31:7 Imm. imm[31:0]

A 4

inst[31:0] ImmSel=S RegWEn

BSel=1ALUSel=AddViemRW=Write

*= “Don’t Care”

WBSel="

Some questions

« Which instruction exercise the critical path?
 Why is the single cycle datapath inefficient?
« How can you improve its performance? What is the purpose of pipelining?

* Load word(lw), which uses all 5 stages.

« At any given time, most of the parts of the single cycle datapath are sitting
unused. Also, even though not every instruction exercises the critical path,
the datapath can only be clocked as fast as the slowest instruction.

* Performance can be improved with pipelining, or putting registers between
stages so that the amount of conditional logic between registers is reduced,
allowing for a faster clock time.

