
CS 110
Computer Architecture

Lecture 2: Introduction to C I

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

1
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Online Class: Rules I

• Displayed names have to be your name in pinyin.
• I will ask some questions during the lecture. We

will try two ways - let's see how they work:
– A) I will enable that everybody can unmute himself - a

student who wants to answer unmutes and gives the
answer.

– B) If that is too chaotic: Students that want to answer
write a 'I' in the chat. I will then select and unmute
one of those students to give the answer.

2

Online Class: Rules II

• The use of chat is allowed with the following
rules:
– Only use English.
– No irrelevant chatter.
– Write short and concise.
– You may report on technical aspects there or
– You may ask questions during the lecture in the

chat!

3

Participation

• Participation is mandatory!
• We are required to record your participation

and ensure your attention =>
• Quiz!
– May be on piazza or
– May be on autolab or
– May be on gradescope!
– Make sure your logins to all 3 are working!

4

Online Class Overview

• The online class has three parts:
– Live lecture (30-40 minutes):

• New content will be taught.
– Typically this covers the same content of the first video of the

next lecture. All videos of the next lecture will be published after
this class.

– You are encouraged to ask questions directly in chat – or use the
chat to indicate that you want to ask a question live (you will be
unmuted then).

– Discussion round (up to 30 minutes):
• Dedicated time to ask questions

– Online Quiz (20 minutes)
• Answer questions about previous content AND content of

this lecture.
5

Introduction Chundong Wang

6

Chundong Wang (���)

2008 2014 2017 2020

Since
2020

Latest Research

Circ-Tree: a B+-tree variant for
in-memory KV database

15

32

5775

6
0

1

2

3
4

5

6

7

&f

&b
&c&d

&aA new view

0 1 2 3 4 5 6 7

Array of KV pairs

6
&a

15
&f

32
&b

57
&c

75
&d

Higher cache efficiency for Insertion/Deletion

SweynTooth: a family of vulnerabilities of
Bluetooth Low Energy Implementations

More …

http://toast-lab.tech

Introduction Sören Schwertfeger

10

Sören Schwertfeger

• Assistant Prof at ShanghaiTech since Aug. 2014

• Running the Mobile Autonomous Robotic Systems Lab (MARS Lab)

• 2005 – 2012: Ph.D. in Computer Science, Jacobs University Bremen,

Germany

• Robotics Enthusiast

• Worked on intelligent functions for ground, underwater, aerial and

space robots:

– Autonomy; Mapping; Vision; Artificial Intelligence

• System Integration of Complex Robotics Software
11

MARS Lab
2 PhD Students; 7 Master Students; Several Undergraduates

12

Research on Mapping (SLAM)

13

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• Pointers & Arrays

14

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• Pointers & Arrays

15

BIG IDEA: Bits can represent anything!!
• Characters?

– 26 letters Þ 5 bits (25 = 32)

– upper/lower case + punctuation
Þ 7 bits (in 8) (“ASCII”)

– standard code to cover all the world’s languages Þ 8,16, 32 bits
(“Unicode”)
www.unicode.com

• Logical values?
– 0 ® False, 1 ® True

• colors ? Ex:
• locations / addresses? commands?
• MEMORIZE: N bits Û at most 2N things

Red (00) Green (01) Blue (11)

Ways to Make Two’s Complement
• For N-bit word, complement to 2ten

N

– For 4 bit number 3ten=0011two, two’s complement

(i.e. -3ten) would be

16ten-3ten=13ten or 10000two – 0011two = 1101two

17

• Here is an easier way:
– Invert all bits and add 1

– Computers actually do it like this, too

0011two

1100two
+ 1two

3ten

1101two

Bitwise complement

-3ten

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• And in Conclusion, …

18

Processor

Control

Datapath

Components of a Computer

19

PC

Registers

Arithmetic & Logic Unit
(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write
Data

Read
Data

Processor-Memory Interface I/O-Memory Interfaces

Program

Data

Great Idea: Levels of
Representation/Interpretation

lw t0, 0(s2)
lw t1, 4(s2)
sw t1, 0(s2)
sw t0, 4(s2)

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g., RISC-V)

Machine Language
Program (RISC-V)

Hardware Architecture Description
(e.g., block diagrams)

Compiler

Assembler

Machine
Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

Logic Circuit Description
(Circuit Schematic Diagrams)

Architecture
Implementation

Anything can be represented
as a number,

i.e., data or instructions

20

We are here!

Introduction to C
“The Universal Assembly Language”

21

Intro to C
• C is not a “very high-level” language, nor a

“big” one, and is not specialized to any
particular area of application. But its absence
of restrictions and its generality make it more
convenient and effective for many tasks than
supposedly more powerful languages.

– Kernighan and Ritchie
• Enabled first operating system not written in

assembly language: UNIX - A portable OS!

22

Intro to C

• Why C?: we can write programs that allow us
to exploit underlying features of the
architecture – memory management, special
instructions, parallelism

• C and derivatives (C++/Obj-C/C#) still one of
the most popular application programming
languages after >40 years!

23

Disclaimer

• You will not learn how to fully code in C in
these lectures! You’ll still need your C
reference for this course
– K&R is a must-have
• Check online for more sources

• Key C concepts: Pointers, Arrays, Implications
for Memory management

• We will use ANSI C89 – original ”old school” C
– Because it is closest to Assembly

24

Compilation: Overview

• C compilers map C programs into architecture-
specific machine code (string of 1s and 0s)
– Unlike Java, which converts to architecture-

independent bytecode
– Unlike Python environments, which interpret the code
– These differ mainly in exactly when your program is

converted to low-level machine instructions (“levels of
interpretation”)

– For C, generally a two part process of compiling .c files
to .o files, then linking the .o files into executables;

– Assembling is also done (but is hidden, i.e., done
automatically, by default); we’ll talk about that later

25

C Compilation Simplified Overview
(more later in course)

26

foo.c bar.c

Compiler Compiler

foo.o bar.o

Linker lib.o

a.out

C source files (text)

Machine code object files

Pre-built object
file libraries

Machine code executable file

Compiler/assembler
combined here

Compilation: Advantages

• Excellent run-time performance: generally
much faster than Scheme or Java for
comparable code (because it optimizes for a
given architecture)

• Reasonable compilation time: enhancements
in compilation procedure (Makefiles) allow
only modified files to be recompiled

27

Compilation: Disadvantages

• Compiled files, including the executable, are
architecture-specific, depending on processor
type (e.g., MIPS vs. RISC-V) and the operating
system (e.g., Windows vs. Linux)

• Executable must be rebuilt on each new system
– I.e., “porting your code” to a new architecture

• “Change ® Compile ® Run [repeat]” iteration
cycle can be slow during development
– but Make tool only rebuilds changed pieces, and can

do compiles in parallel (linker is sequential though ->
Amdahl’s Law)

28

C Pre-Processor (CPP)

• C source files first pass through macro processor, CPP, before
compiler sees code

• CPP replaces comments with a single space
• CPP commands begin with “#”
• #include “file.h” /* Inserts file.h into output */
• #include <stdio.h> /* Looks for file in standard location */
• #define M_PI (3.14159) /* Define constant */
• #if/#endif /* Conditional inclusion of text */
• Use -save-temps option to gcc to see result of preprocessing
• Full documentation at: http://gcc.gnu.org/onlinedocs/cpp/

29

foo.c CPP foo.i Compiler

http://gcc.gnu.org/onlinedocs/cpp/

Piazza Question: CPP Macro
Which one is the correct way?

// Magnitude (Length) of Vector (x, y)
1) #define mag(x, y) = sqrt(x*x + y*y);
2) #define mag(x, y) = sqrt(x*x + y*y)
3) #define mag(x, y) = (sqrt(x*x + y*y))
4) #define mag(x, y) sqrt(x*x + y*y);
5) #define mag(x, y) sqrt(x*x + y*y)
6) #define mag(x, y) (sqrt(x*x + y*y))
7) #define mag(x, y) = sqrt((x)*(x) + (y)*(y))
8) #define mag(x, y) = sqrt((x*x) + (y*y));
9) #define mag(x, y) sqrt((x*x) + (y*y))
10)#define mag(x, y) (sqrt((x*x) + (y*y));)
11)#define mag((x), (y)) (sqrt((x*x) + (y*y)))

30

Piazza: “Lecture 1 CPP Macro”

• Correct answer:
• Most correct solution:
#define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))
• Rules:
– Convention: macros are CAPITALIZED
– Put parenthesis around arguments – if missing:
– #define MAG(x, y) (sqrt((x*x) + (y*y)))
– MAG(a+2, 1-b) =>
sqrt((a+2*a+2) + (1-b*1-b) =>
sqrt((3*a+2) + (1-2*b))

31

Piazza Question: CPP Macro

NONE

• More Pitfalls:
– Put the whole macro body in parentheses:

• #define ADD(a, b) (a) + (b)
• int result = 3 * ADD(2, 3); // is 15!? =>
• int result = 3 * 2 + 3; // is 9

– => Convention: put parenthesis EVERYWHERE!
– Never put a semicolon after the macro:

• #define MAG(x, y) (sqrt((x)*(x) + (y)*(y)));
• May work for:
• double len = MAG(a+2, 1-b);
• But not, for example, here:
• printf(“Magnitude: %f “, MAG(a, b));

32

Piazza Question: CPP Macro

– Most Correct version:
– #define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))
– int val = 3;
– double len = MAG(++val, 4);
– Printf(“ val: %d len^2: %f \n”, val, len*len);

A: val: 3 len^2: 25 B: val: 4 len^2: 25 C: val: 5 len^2: 25
D: val: 3 len^2: 32 E: val: 4 len^2: 32 F: val: 5 len^2: 32
G: val: 3 len^2: 36 H: val: 4 len^2: 36 I: val: 5 len^2: 36
J: val: 3 len^2: 41 K: val: 4 len^2: 41 L: val: 5 len^2: 41

M: val: 6 len^2: 25 N: val: 6 len^2: 32 O: val: 6 len^2: 36
P: val: 6 len^2: 41

33

Piazza Question: CPP Macro II
Piazza: “Lecture 1 CPP Macro II”

– Most Correct version:
– #define MAG(x, y) (sqrt((x)*(x) + (y)*(y)))
– int val = 3;
– double len = MAG(++val, 4);
– Printf(“ val: %d len^2: %f \n”, val, len*len);

– Answer: I: val: 5 len^2: 36:
double len = (sqrt((++val)*(++val) + (4)*(4)));
double len = (sqrt((4)*(5) + (4)*(4)));

34

Piazza Question: CPP Macro II

• Avoid using macros whenever possible
• NO or very tiny speedup.
• Instead use C functions – e.g. inline function:

double mag(double x, double y);
double inline mag(double x, double y)
{ return sqrt(x*x + y*y); }

• Read more…
• https://chunminchang.gitbooks.io/cplusplus-learning-

note/content/Appendix/preprocessor_macros_vs_inline_functions.html 35

Piazza Question: CPP Macro II

https://chunminchang.gitbooks.io/cplusplus-learning-note/content/Appendix/preprocessor_macros_vs_inline_functions.html

Typed Variables in C

int variable1 = 2;
float variable2 = 1.618;
char variable3 = 'A';

• Must declare the type of
data a variable will hold
– Types can't change

36

Type Description Examples
int integer numbers, including negatives 0, 78, -1400
unsigned int integer numbers (no negatives) 0, 46, 900
long larger signed integer -6,000,000,000
char single text character or symbol 'a', 'D', '?’
float floating point decimal numbers 0.0, 1.618, -1.4
double greater precision/big FP number 10E100

Integers: Python vs. Java vs. C

• C: int should be integer type that target
processor works with most efficiently

• Only guarantee: sizeof(long long)
≥ sizeof(long) ≥ sizeof(int) ≥ sizeof(short)
– Also, short >= 16 bits, long >= 32 bits
– All could be 64 bits 37

Language sizeof(int)
Python >=32 bits (plain ints), infinite (long ints)
Java 32 bits
C Depends on computer; 16 or 32 or 64

Consts and Enums in C
• Constant is assigned a typed value once in the declaration;

value can't change during entire execution of program
const float golden_ratio = 1.618;
const int days_in_week = 7;

• You can have a constant version of any of the standard C
variable types

• Enums: a group of related integer constants. Ex:
enum cardsuit {CLUBS,DIAMONDS,HEARTS,SPADES};
enum color {RED, GREEN, BLUE};

38

B: Can assign to “PI” but not “pi”

C: Code runs at same speed using “PI” or “pi”

A: Constants “PI” and “pi” have same type

39

Compare “#define PI 3.14” and
“const float pi=3.14” – which is true?

C Syntax: Variable Declarations

• All variable declarations must appear before they
are used (e.g., at the beginning of the block)

• A variable may be initialized in its declaration;
if not, it holds garbage!

• Examples of declarations:
– Correct: {

int a = 0, b = 10;
...

−Incorrect: for (int i = 0; i < 10; i++)
}

40
Newer C standards are more flexible about this…

C Syntax: True or False

• What evaluates to FALSE in C?
– 0 (integer)
– NULL (a special kind of pointer: more on this later)
– No explicit Boolean type

• What evaluates to TRUE in C?
– Anything that isn’t false is true
– Same idea as in Python: only 0s or empty

sequences are false, anything else is true!

41

C operators

• arithmetic: +, -, *, /, %
• assignment: =
• augmented assignment:

+=, -=, *=, /=, %=, &=,
|=, ^=, <<=, >>=

• bitwise logic: ~, &, |, ^
• bitwise shifts: <<, >>
• boolean logic: !, &&, ||
• equality testing: ==, !=

• subexpression
grouping: ()

• order relations: <, <=, >,
>=

• increment and
decrement: ++ and --

• member selection: ., ->
• conditional evaluation:

? :

42

Online Class: Admin

• Next: Question and Answer

• After: Discussion material presented by
head TA Yanjie Song

• Then: Online Quiz

43

Q & A

44

Discussion by Yanjie Song

45

Online Quiz

Go to piazza and answer the 3 polls
named:

Online Lecture 1 Feedback: XXX

46

CS 110
Computer Architecture

Lecture 2: Introduction to C, Part I
Video 2: Pointers

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

47
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• Pointers & Arrays

48

Address vs. Value
• Consider memory to be a single huge array
– Each cell of the array has an address associated

with it
– Each cell also stores some value
– For addresses do we use signed or unsigned

numbers? Negative address?!
• Don’t confuse the address referring to a

memory location with the value stored there

49

23 42 101 102 103 104 105 ...

Pointers
• An address refers to a particular memory

location; e.g., it points to a memory location
• Pointer: A variable that contains the address

of a variable

50

23 42 101 102 103 104 105 ...

x y

Location (address)

name
p

104

Pointer Syntax

• int *x;
– Tells compiler that variable x is address of an int

• x = &y;
– Tells compiler to assign address of y to x
– & called the “address operator” in this context

• z = *x;
– Tells compiler to assign value at address in x to z
– * called the “dereference operator” in this context

51

Creating and Using Pointers

52

• How to create a pointer:
& operator: get address of a variable
int *p, x;

p ? x ?

x = 3;
p ? x 3

p = &x;
p x 3

•How get a value pointed to?
“*” (dereference operator): get the value that the pointer points to

printf(“p points to value %d\n”,*p);

Note the “*” gets used
2 different ways in this
example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

Using Pointer for Writes

• How to change a variable pointed to?
– Use the dereference operator * on left of

assignment operator =

53

p x 5*p = 5;

p x 3

Pointers and Parameter Passing
• C passes parameters “by value”
– Procedure/function/method gets a copy of the

parameter, so changing the copy cannot change the
original

void add_one (int x) {
x = x + 1;

}
int y = 3;
add_one(y);

y remains equal to 3

54

Pointers and Parameter Passing
• How can we get a function to change the value

held in a variable?

void add_one (int *p) {
*p = *p + 1;
}

int y = 3;

add_one(&y);

y is now equal to 4

55

What would you use in C++?

Call by reference:
void add_one (int &p) {

p = p + 1; // or p += 1;
}

Types of Pointers

• Pointers are used to point to any kind of data
(int, char, a struct, etc.)

• Normally a pointer only points to one type
(int, char, a struct, etc.).
– void * is a type that can point to anything

(generic pointer)
– Use void * sparingly to help avoid program bugs,

and security issues, and other bad things!

56

More C Pointer Dangers
• Declaring a pointer just allocates space to hold

the pointer – it does not allocate the thing
being pointed to!

• Local variables in C are not initialized, they
may contain anything (aka “garbage”)

• What does the following code do?

57

void f()
{

int *ptr;
*ptr = 5;

}

Pointers and Structures
typedef struct {

int x;
int y;

} Point;

Point p1;
Point p2;
Point *paddr;

/* dot notation */
int h = p1.x;
p2.y = p1.y;

/* arrow notation */
int h = paddr->x;
int h = (*paddr).x;

/* This works too */
p1 = p2;

58

Note: C structure assignment is not a ”deep copy”.
All members are copied, but not things pointed to
by members.

Pointers in C
• Why use pointers?
– If we want to pass a large struct or array, it’s easier /

faster / etc. to pass a pointer than the whole thing
– In general, pointers allow cleaner, more compact code

• So what are the drawbacks?
– Pointers are probably the single largest source of bugs

in C, so be careful anytime you deal with them
• Most problematic with dynamic memory management—

coming up next week
• Dangling references and memory leaks

59

Why Pointers in C?

• At time C was invented (early 1970s), compilers
often didn’t produce efficient code
– Computers 100,000 times faster today, compilers

better

• C designed to let programmer say what they want
code to do without compiler getting in way
– Even give compilers hints which registers to use!

• Today’s compilers produce much better code, so
may not need to use pointers in application code

• Low-level system code still needs low-level access
via pointers

60

Quiz: Pointers
void foo(int *x, int *y)
{ int t;

if (*x > *y) { t = *y; *y = *x; *x = t; }
}
int a=3, b=2, c=1;
foo(&a, &b);
foo(&b, &c);
foo(&a, &b);
printf("a=%d b=%d c=%d\n", a, b, c);

61

A: a=3 b=2 c=1
B: a=1 b=3 c=2
C: a=3 b=3 c=3
D: a=1 b=2 c=3
E: a=1 b=1 c=1

Result is:

Piazza: “Lecture 2 Pointer poll”

iPhone 11 Pro Max Teardown
ifixit.com

62

Get logic board out
dual layer design

63

• Apple 64bit System on a chip (SoC); A13:
– Hexa core (2 high performance (up to 2.66 GHz), 4 low power)
– Apple designed GPU
– Motion Processor; Image Processor; Neural Engine
– 4 GB LPDDR4X (memory)
– L1 cache: 128 KB instruction, 128 KB data (fast cores)
– L2 cache: 8 MB; (fasy cores; 4MB slow cores)
– L3 cache : yes, 16MB, shared with other cores (e.g. GPU)

64

65

66

67

RF board

68

CS 110
Computer Architecture

Lecture 2: Introduction to C, Part I
Video 4: Pointers & Arrays

Instructors:
Sören Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

69
Slides based on UC Berkley's CS61C

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Agenda

• Everything is a Number
• Compile vs. Interpret
• Pointers
• Pointers & Arrays

70

C Arrays

• Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};
declares and initializes a 2-element integer array

71

C Strings
• String in C is just an array of characters

char string[] = "abc";
• How do you tell how long a string is?
– Last character is followed by a 0 byte

(aka “null terminator”)

72

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Array Name / Pointer Duality
• Key Concept: Array variable is a “pointer” to the first

(0th) element
• So, array variables almost identical to pointers
– char *string and char string[] are nearly

identical declarations
– Differ in subtle ways: incrementing, declaration of filled

arrays
• Consequences:
– ar is an array variable, but works like a pointer
– ar[0] is the same as *ar
– ar[2] is the same as *(ar+2)
– Can use pointer arithmetic to conveniently access arrays

73

Changing a Pointer Argument?

• What if want function to change a pointer?
• What gets printed?

void inc_ptr(int *p)
{ p = p + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

*q = 50

50 60 70

A q

Pointer to a Pointer

• Solution! Pass a pointer to a pointer, declared
as **h

• Now what gets printed?
void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(&q);
printf(“*q = %d\n”, *q);

*q = 60

50 60 70

A q q

C Arrays are Very Primitive
• An array in C does not know its own length,

and its bounds are not checked!
– Consequence: We can accidentally access off the

end of an array
– Consequence: We must pass the array and its size

to any procedure that is going to manipulate it

• Segmentation faults and bus errors:
– These are VERY difficult to find;

be careful!

76

Use Defined Constants

• Array size n; want to access from 0 to n-1, so you should use
counter AND utilize a variable for declaration & incrementation
– Bad pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

– Better pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• SINGLE SOURCE OF TRUTH
– You’re utilizing indirection and avoiding maintaining two copies of the

number 10

– DRY: “Don’t Repeat Yourself”

77

Pointing to Different Size Objects
• Modern machines are “byte-addressable”

– Hardware’s memory composed of 8-bit storage cells, each has a
unique address

• A C pointer is just abstracted memory address
• Type declaration tells compiler how many bytes to fetch on

each access through pointer
– E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

78

424344454647484950515253545556575859

int *x

32-bit integer
stored in four bytes

short *y

16-bit short stored
in two bytes

char *z

8-bit character
stored in one byte

Byte address

sizeof() operator

• sizeof(type) returns number of bytes in object
– But number of bits in a byte is not standardized
• In olden times, when dragons roamed the earth, bytes

could be 5, 6, 7, 9 bits long

• By definition, sizeof(char)==1
• Can take sizeof(arr), or sizeof(structtype)
• We’ll see more of sizeof when we look at

dynamic memory management

79

80

Pointer Arithmetic
pointer + number pointer – number
e.g., pointer + 1 adds 1 something to a pointer

char *p;
char a;
char b;

p = &a;
p += 1;

int *p;
int a;
int b;

p = &a;
p += 1;

In each, p now points to b
(Assuming compiler doesn’t
reorder variables in memory.

Never code like this!!!!)

Adds 1*sizeof(char)
to the memory address

Adds 1*sizeof(int)
to the memory address

Pointer arithmetic should be used cautiously

81

Arrays and Pointers

• Array » pointer to the initial (0th) array
element

a[i] º *(a+i)

• An array is passed to a function as a pointer
– The array size is lost!

• Usually bad style to interchange arrays and
pointers
– Avoid pointer arithmetic!

Really int *array

int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

Must explicitly
pass the size

Passing arrays:

82

Arrays and Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What does this print (32bit)?

What does this print (32bit)?

4

40

... because array is really
a pointer (and a pointer is
architecture dependent, but
likely to be 8 on modern
machines!)

83

Arrays and Pointers

int i;
int array[10];

for (i = 0; i < 10; i++)
{

array[i] = …;
}

int *p;
int array[10];

for (p = array; p < &array[10]; p++)
{

*p = …;
}

These code sequences have the same effect!

C Strings
• String in C is just an array of characters

char string[] = "abc";
• How do you tell how long a string is?
– Last character is followed by a 0 byte

(aka “null terminator”)

85

int strlen(char s[])
{

int n = 0;
while (s[n] != 0) n++;
return n;

}

Concise strlen()
int strlen(char *s)
{

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

What happens if there is no zero character
at end of string?

86

Point past end of array?

• Array size n; want to access from 0 to n-1, but
test for exit by comparing to address one
element past the array
int ar[10], *p, *q, sum = 0;
...
p = &ar[0]; q = &ar[10];
while (p != q)

/* sum = sum + *p; p = p + 1; */
sum += *p++;
– Is this legal?
• C defines that one element past end of array

must be a valid address, i.e., not cause an error

Valid Pointer Arithmetic

• Add an integer to a pointer.
• Subtract 2 pointers (in the same array)
• Compare pointers (<, <=, ==, !=, >, >=)
• Compare pointer to NULL (indicates that the

pointer points to nothing)

Everything else illegal since makes no sense:
• adding two pointers
• multiplying pointers
• subtract pointer from integer

Arguments in main()

• To get arguments to the main function, use:
– int main(int argc, char *argv[])

• What does this mean?
– argc contains the number of strings on the

command line (the executable counts as one, plus
one for each argument). Here argc is 2:

unix% sort myFile
– argv is a pointer to an array containing the

arguments as strings

89

Example

• foo hello 87
• argc = 3 /* number arguments */
• argv[0] = "foo",
argv[1] = "hello",
argv[2] = "87"
–Array of pointers to strings

90

Quiz:

int x[] = { 0, 2, 4, 6, 8, 10, 12, 14 };
int *p = x;
int **pp = &p;
(*pp)++;
(*pp)+= **pp;
(*(*pp))++;
printf("%d\n", *p);

91

Select the result in the poll.

Piazza: “Lecture 2 PP poll”

Summary

• “Lowest High-level language”
– Use ANSI C89 in class
– => closest to assembler

• Pointers: powerful but dangerous

• Pointer arithmetic and arrays useful

92

