CS 110
Computer Architecture

Lecture 2: Introduction to C |

Instructors:
Soren Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
1

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

Online Class: Rules |

* Displayed names have to be your name in pinyin.

* | will ask some questions during the lecture. We
will try two ways - let's see how they work:

— A) | will enable that everybody can unmute himself - a
student who wants to answer unmutes and gives the
answer.

— B) If that is too chaotic: Students that want to answer
write a 'l' in the chat. | will then select and unmute
one of those students to give the answer.

(7

Online Class: Rules Il

 The use of chat is allowed with the following
rules:
— Only use English.
— No irrelevant chatter.
— Write short and concise.
— You may report on technical aspects there or

— You may ask questions during the lecture in the
chat!

Participation

* Participation is mandatory!

* We are required to record your participation
and ensure your attention =>

* Quiz!
— May be on piazza or
— May be on autolab or

— May be on gradescope!
— Make sure your logins to all 3 are working!

Online Class Overview

* The online class has three parts:

— Live lecture (30-40 minutes):

 New content will be taught.

— Typically this covers the same content of the first video of the
next lecture. All videos of the next lecture will be published after
this class.

— You are encouraged to ask questions directly in chat — or use the
chat to indicate that you want to ask a question live (you will be
unmuted then).

— Discussion round (up to 30 minutes):
* Dedicated time to ask questions
— Online Quiz (20 minutes)

* Answer questions about previous content AND content of
this lecture.

Introduction Chundong Wang

Chundong Wang (+ &’k

BEH CU N Agency for — :
‘ Science, Technology — I

National University and Research
of Singapore SINGAPORE UNIVERS[TY OF

SINGAPORE TECHNOLOGY AND DESIGN

FLA LS

XI'AN JIAOTONG UNIVERSITY

EWBRZARF

ShanghaiTech University

Latest Research

Circ-Tree: a B+-tree variant for SweynTooth: a family of vulnerabilities of
in-memory KV database Bluetooth Low Energy Implementations
i I
fu=yntooTH ?)
||
&a &f —
0 1 2 €
1
A new view y
(a) FitBit (b) Eve Energy (c) August
Inspire Smart Lock

. 8
Higher cache efficiency for Insertion/Deletion

(d) CubiTag (e) eGeeTouch

More ...

TOAST LAB

1P 3 2 % =

http://toast-lab.tech

STAR CENTER

Assistant Prof at ShanghaiTech since Aug. 2014
Running the Mobile Autonomous Robotic Systems Lab (MARS Lab)

2005 - 2012: Ph.D. in Computer Science, Jacobs University Bremen,

Germany

, , N J JACOBS
Robotics Enthusiast UNIVERSITY
Worked on intelligent functions for ground, underwater, aerial and
space robots:

— Autonomy; Mapping; Vision; Artificial Intelligence

System Integration of Complex Robotics Software

11

MARS Lab

2 PhD Students; 7 Master Students; Several Undergraduates

Research on Mapping (SLAM)

Agenda

Everything is a Number
Compile vs. Interpret
Pointers

Pointers & Arrays

14

Agenda

* Everythingis a Number

15

BIG IDEA: Bits can represent anything!!

 (Characters?
— 26 letters = 5 bits (2° = 32)

— upper/lower case + punctuation
= 7 bits (in 8) (“ASCII”)

— standard code to cover all the world’s languages = 8,16, 32 bits l
(“Unicode”) A

www.unicode.com

* Logical values?

— 0 > False, 1 - True

* |ocations / addresses? commands?
« MEMORIZE: N bits < at most 2N things

 colors ? Ex:

Ways to Make Two’s Complement

* For N-bit word, complement to 2, N

ten

— For 4 bit number 3,,,=0011,,,, two’s complement
(i.e. -3.,) would be

16,.,-3¢en=13., OF 10000,,,, — 0011,,, = 1101,,,

* Here is an easier way: 3., 0011,

— Invert all bits and add 1 o
Bitwise complement 1100,,,,

+ 1two

— Computers actually do it like this, too -3ten 1101,

17

Agenda

 Compile vs. Interpret

18

Components of a Computer

Processor
Enable?

Read/Write

Address
Write
l“in?.JL1lilL1 Data

Arithmetic & Logic Unit Read
(ALU) Data

\ J
Y \ J

Processor-Memory Interface |/O-Memory Interfaces

19

Great Idea: Levels of
Representation/Interpretation

v[k+1] = temp;

Compiler

lw 10, 0(s2) Anything can be represented

Assembly Language lw t1, 4(s2) as a number,

Program (e.g., RISC-V) :x Eé gggg i.e., data or instructions

Assembler

: 0000 1001 1100 0110 1010 1111 0101 1000

Machine Language 1010 1111 0101 1000 0000 1001 1100 0110

Program (RISC-V) 1100 0110 1010 1111 0101 1000 0000 1001

I 0101 1000 0000 1001 1100 0110 1010 1111

Machine

Interpretation

Hardware Architecture Description
(e.g., block diagrams)

Architecture
Implementation

Logic Circuit Description
(Circuit Schematic Diagrams)

20

Introduction to C

“The Universal Assembly Language”

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SOFTWARE SERIES

21

Intro to C

 Cisnota “very high-level” language, nor a
“big” one, and is not specialized to any
particular area of application. But its absence
of restrictions and its generality make it more
convenient and effective for many tasks than
supposedly more powerful languages.

— Kernighan and Ritchie

* Enabled first operating system not written in
assembly language: UNIX - A portable OS!

Intro to C

 Why C?: we can write programs that allow us
to exploit underlying features of the

architecture — memory management, special
instructions, parallelism

* C and derivatives (C++/0bj-C/C#) still one of

the most popular application programming
languages after >40 years!

Disclaimer

* You will not learn how to fully code in Cin
these lectures! You'll still need your C
reference for this course

— K&R is a must-have
* Check online for more sources

* Key C concepts: Pointers, Arrays, Implications
for Memory management

 We will use ANSI C89 — original “old school” C
— Because it is closest to Assembly

Compilation: Overview

* Ccompilers map C programs into architecture-
specific machine code (string of 1s and Os)

— Unlike Java, which converts to architecture-
independent bytecode

— Unlike Python environments, which interpret the code

— These differ mainly in exactly when your program is
converted to low-level machine instructions (“levels of
interpretation”)

— For C, generally a two part process of compiling .c files
to .o files, then linking the .o files into executables;

— Assembling is also done (but is hidden, i.e., done
automatically, by default); we’ll talk about that later

C Compilation Simplified Overview
(more Iater in course)

foo.c bar.c C source files (text)

Compiler/assembler
combined here

foo.o bar.o Machine code object files

lib.o JPre-bui/t object
file libraries

a.out J Machine code executable file

26

* Exce
muc
com

Compilation: Advantages

lent run-time performance: generally
n faster than Scheme or Java for

narable code (because it optimizes for a

given architecture)

* Reasonable compilation time: enhancements
in compilation procedure (Makefiles) allow

only

modified files to be recompiled

Compilation: Disadvantages

 Compiled files, including the executable, are
architecture-specific, depending on processor
type (e.g., MIPS vs. RISC-V) and the operating
system (e.g., Windows vs. Linux)

e Executable must be rebuilt on each new system
— l.e., “porting your code” to a new architecture

* “Change — Compile — Run [repeat]” iteration
cycle can be slow during development

— but Make tool only rebuilds changed pieces, and can
do compiles in parallel (linker is sequential though ->
Amdahl’s Law)

C Pre-Processor (CPP)

foo.c foo.] 7

C source files first pass through macro processor, CPP, before
compiler sees code

CPP replaces comments with a single space

CPP commands begin with “#”

#tinclude “file.h” /* Inserts file.h into output */

#include <stdio.h> /* Looks for file in standard location */
#tdefine M _PI (3.14159) /* Define constant */

#if /tendif /* Conditional inclusion of text */

Use -save-temps option to gcc to see result of preprocessing

Full documentation at: http://gcc.gnu.org/onlinedocs/cpp/
29

http://gcc.gnu.org/onlinedocs/cpp/

Piazza Question: CPP Macro
Which one is the correct way?

Piazza: “Lecture 1 CPP Macro”

#define mag
#define mag
#define mag
#define mag

) = sqrt(xX*x + y*y);
) = sqgrt(xX*x + y*y)

) = (sqgrt(x*x + y*y))
) sqrt(X*xX + y*y);

) sgqrt(xX*x + y*y)

) #define mag (sgrt(x*x + y*y))

) #define mag = sqgrt((X)*(x) + (y)*(y))
) #define mag = sgrt((x*x) + (y*y));

) #define mag sgrt((x*x) + (y*y))
0)#define mag(x, y) (sgrt((x*x) + (y*y))3;)

1

)#define mag((x), (y)) (sart((x*x) + (y*y)))

30

(
(
(
(
#define mag(x,
(
(
(
(

R KK KK KKKNKK

1
2
3
4
5
6
7
8
9
1
1

(7

Piazza Question: CPP Macro e

e Correct answer: NONE

e Most correct solution:
#define MAG(X, y) (sart((x)*(x) + (y)*(y)))
e Rules:

— Convention: macros are CAPITALIZED

— Put parenthesis around arguments — if missing:
— #define MAG(x, y) (sqgrt((x*x) + (y*y)))

— MAG(at+2, 1-b) =>
sqrt((at+2*a+2) + (1l-b*1-b) =>
sgrt((3*a+2) + (1-2*Db))

31

Piazza Question: CPP Macro

More Pitfalls:
— Put the whole macro body in parentheses:
e #define ADD(a, b) (a) + (b)
e int result = 3 * ADD(2, 3);
e int result = 3 * 2 + 3;
— => Convention: put parenthesis EVERYWHERE!
— Never put a semicolon after the macro:

e #define MAG(x, y) (sgrt((x)*(x) + (Y)*(y)));

* May work for:
double len = MAG(a+2, 1-b);

But not, for example, here:
printf (“Magnitude: %f “, MAG(a, b));

32

Piazza Question: CPP Macro Il

Piazza: “Lecture 1 CPP Macro Il1”

— Most Correct version:
— #define MAG(x, y) (sqrt((x)*(x) + (Y)*(y)))
— int val = 3;

— double 1len

— Printf(” va

A:val: 3 len?2: 25
D:val:3 len”2: 32
G:val: 3 len”2: 36
J:val: 3 len2:41

M: val: 6 len”2: 25

= MAG(++val, 4);

l: 8d 1len”2: %f \n”, val, len*len);

B:val: 4 len”2: 25
E:val: 4 len”2:32
H:val: 4 len”2: 36
K:val: 4 len”2:41

N:val: 6 len”2: 32
P:val: 6 len”*2:41

C:val: 5 len”2: 25
F:val:5 len”2:32
l:val: 5 len”2: 36
L: val: 5 len?2:41

O:val: 6 len”™2: 36

33

Piazza Question: CPP Macro Il

— Most Correct version:

— #define MAG(x, y) (sqart((x)*(x) + (y)*(y)))

— int val = 3;

— double len = MAG(++val, 4);

— Printf(” val: %d 1len”2: %f \n”, val, len*len);

— Answer: I: val: 5 len”2: 36:

double len = (sqrt((++val)*(++val) + (4)*(4)));
double len = (sqrt((4)*(5) + (4)*(4)));

test.c:14:19: warning: multiple unsequenced modifications to ‘val’

[-Munsequenced]
double len = MAG(++val, 4);
A

: expanded from macro "MAG®
#define MAG(x, y) (sqrt(QO*0) + (y)*(y)))

A ~

1 warning generated.

(7

Piazza Question: CPP Macro Il e

* Avoid using macros whenever possible
* NO or very tiny speedup.
* |[nstead use C functions — e.g. inline function:

double mag(double x, double y);

double inline mag(double x, double y)
{ return sqrt(x*x + y*y); }

e Read more...

* https://chunminchang.gitbooks.io/cplusplus-learning-
note/content/Appendix/preprocessor macros vs inline functions.html 3s

https://chunminchang.gitbooks.io/cplusplus-learning-note/content/Appendix/preprocessor_macros_vs_inline_functions.html

Typed Variables in C

int variablel = 2; e Must declare the type of
float variable? = 1.018; . .
char variable3 = 'AT; data a variable will hold
— Types can't change
Type Description Examples
int integer numbers, including negatives 0, 78, -1400
unsigned int integer numbers (no negatives) 0, 46, 900
long larger signed integer -6,000,000,000
char single text character or symbol 'a','D','?’
float floating point decimal numbers 0.0,1.618,-1.4

double greater precision/big FP number 10E100

36

Integers: Python vs. Java vs. C

Language |sizeof(in)

Python >=32 bits (plain ints), infinite (long ints)
Java 32 bits
C Depends on computer; 16 or 32 or 64

 C: int should be integer type that target
processor works with most efficiently

* Only guarantee: sizeof(long long)
> sizeof(long) > sizeof(int) > sizeof(short)
— Also, short >=16 bits, long >= 32 bits
— All could be 64 bits 37

Consts and Enums in C

Constant is assigned a typed value once in the declaration;
value can't change during entire execution of program
const float golden ratio = 1.618;

const int days in week = 7;

You can have a constant version of any of the standard C
variable types

Enums: a group of related integer constants. Ex:

enum cardsuit {CLUBS,DIAMONDS, HEARTS,SPADES};
enum color {RED, GREEN, BLUE};

Compare “#define PI 3.14" and
“const float pi=3.14" —which is true?

B: Can assign to “P1” but not “pi”

D: “pi” takes more memory space than “P1”

E: Both behave the same in all situations

39

C Syntax: Variable Declarations

* Allvariable declarations must appear before they
are used (e.g., at the beginning of the block)

* A variable may be initialized in its declaration;
if not, it holds garbage!

 Examples of declarations:
— Correct: {

int a = 0, b= 10;

—Incorrect: for (int i = 0; i < 10; i++)

}

Newer C standards are more flexible about this...
40

C Syntax: True or False

* What evaluates to FALSE in C?
— 0 (integer)
— NULL (a special kind of pointer: more on this later)
— No explicit Boolean type

 What evaluates to TRUE in C?
— Anything that isn’t false is true

— Same idea as in Python: only Os or empty
sequences are false, anything else is true!

C operators

arithmetic: +, -, *, /, % * subexpression

assignment: = grouping: ()

augmented assignment: ° order relations: <, <=, >,

+=, -5, *=, /=, %=, &=, >=

|=, A=, <<=, >>= * increment and

vitwise logic: ~, &, |, » decrement: ++ and --

vitwise shifts: <<, >> * member selection: ., ->

voolean logic: |, &&, || * conditional evaluation:
PAE

equality testing: ==, I=

Online Class: Admin

e Next: Question and Answer

e After: Discussion material presented by
head TA Yanjie Song

e Then: Online Quiz

43

Q&A

Discussion by Yanjie Song

Online Quiz

Go to piazza and answer the 3 polls
named:

Online Lecture 1 Feedback: XXX

46

CS 110
Computer Architecture

Lecture 2: Introduction to C, Part |
Video 2: Pointers

Instructors:
Soren Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
47

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

 Pointers

Agenda

48

Address vs. Value

* Consider memory to be a single huge array
— Each cell of the array has an address associated
with it
— Each cell also stores some value

— For addresses do we use sighed or unsigned
numbers? Negative address?!

* Don’t confuse the address referring to a
memory location with the value stored there

101 102 103 104 105 ...
23 42

Pointers

* An address refers to a particular memory
location; e.g., it points to a memory location

e Pointer: A variable that contains the address
of a variable

Location (address) / \
\ 101 102 103 104 105 ...

23 42 104

nName

Pointer Syntax

e int *x;
— Tells compiler that variable x is address of an int
* X = &y;
— Tells compiler to assign address of y to x
— & called the “address operator” in this context
* » = *X;
— Tells compiler to assign value at address in x to z
— * called the “dereference operator” in this context

51

Creating and Using Pointers

* How to create a pointer:
& operator: get address of a variable

int *p, x;

3;

X

P = &X;

P

P

P

? X ?
? X 3
X 3

e How get a value pointed to?
“*” (dereference operator): get the value that the pointer points to

Note the “*” gets used
2 different ways in this
example. In the
declaration to indicate
that p is going to be a
pointer, and in the
printf to get the
value pointed to by p.

printf (“p points to value %d\n”, *p);

52

Using Pointer for Writes

* How to change a variable pointed to?

— Use the dereference operator * on left of
assignment operator =

P 3

5

T3
T3

Pointers and Parameter Passing

e C passes parameters “by value”

— Procedure/function/method gets a copy of the
parameter, so changing the copy cannot change the
original

void add one (int x) {
Xx = x + 1;
}

int y = 3;
add one(y);

y remains equal to 3

54

Pointers and Parameter Passing

* How can we get a function to change the value
held in a variable?

void add_one (1nt *p) {

}
int y = 3; What would you use in C++7?
add_one (&y); Call by reference:
void add_one (int &p) {
y is now equal to 4 p=p+1; //or p+=1;

}

55

Types of Pointers

* Pointers are used to point to any kind of data
(int, char, a struct, etc.)

* Normally a pointer only points to one type
(int, char, a struct, etc.).
— void * is a type that can point to anything
(generic pointer)
— Use void * sparingly to help avoid program bugs,
and security issues, and other bad things!

More C Pointer Dangers

* Declaring a pointer just allocates space to hold
the pointer — it does not allocate the thing
being pointed to!

* Local variables in C are not initialized, they
may contain anything (aka “garbage”)

 What does the following code do?

void £ ()

{
int *ptr;
*ptr = 5;

Pointers and Structures

typedef struct { /* dot notation */
int x; int h = pl.x;
int y; p2.y = pl.y;
} Point;
/* arrow notation */
Point pl; int h = paddr->x;
Point p2; int h = (*paddr) .x;

Point *paddr;
/* This works too */
pl = p2;

Note: C structure assignment is not a "deep copy”.
All members are copied, but not things pointed to
by members.

Pointers in C

* Why use pointers?
— If we want to pass a large struct or array, it’s easier /
faster / etc. to pass a pointer than the whole thing

— In general, pointers allow cleaner, more compact code

* So what are the drawbacks?

— Pointers are probably the single largest source of bugs
in C, so be careful anytime you deal with them

* Most problematic with dynamic memory management—
coming up next week

* Dangling references and memory leaks

Why Pointers in C?

At time C was invented (early 1970s), compilers
often didn’t produce efficient code

— Computers 100,000 times faster today, compilers
better

C designed to let programmer say what they want
code to do without compiler getting in way

— Even give compilers hints which registers to use!

Today’s compilers produce much better code, so
may not need to use pointers in application code

Low-level system code still needs low-level access
via pointers

Piazza:

Quiz: Pointers

void foo(int *x, int *y)

{ int t

if (*x > *y) { t = *y;

}

°
4

int a=3, b=2, c=1;

foo(&a,
foo (&b,
foo(&a,
printf ("

Result is:

&b) ;
&c) ;
&b) ;

a=3%d b=%d c=%d\n", a, b

a=3 b=2 c=1
a=1l b=3 c=2
a=3 b=3 c¢=3
a=1 b=2 c¢=3
a=1 b=1 c=1

*y = *x;

“Lecture 2 Pointer poll”

*xX

t;

}

61

iPhone 11 Pro Max Teardown
ifixit.com

e

Get logic board out
dual layer design

63

* Apple 64bit System on a chip (SoC); A13:

Hexa core (2 high performance (up to 2.66 GHz), 4 low power)
Apple designed GPU

Motion Processor; Image Processor; Neural Engine

4 GB LPDDR4X (memory)

L1 cache: 128 KB instruction, 128 KB data (fast cores)

L2 cache: 8 MB; (fasy cores; 4MB slow cores)

L3 cache : yes, 16 MB, shared with other cores (e.g. GPU)

uuuuuuuuuuuuuuuu

T Il nwvv00t0i0°‘

- LA 2 22 ..90"0’
- - -
-
. wibe e CEET

. Eo-

a®

€
c

. T

eeceon,
ceee
teE
ol
-
-
sscse®e
2000w ee

i Um

A 4 N F IR
.

LA A A A 2 0N

a¥ene g
Xy

uuuuuuuuuuuuuu uootuotu.
SEsTsarTasssseessaceoee B

Apple APLIWES A13 Bionic SoC layered over
SK Hynix HZHKNNNCRMMVDR-NEH
LPDDR4X (seemingly 4 GB, but SK Hynix
needs to update their decoder)

AAAAL AL LI T YT
r - B
AALL LA I

foe0

T - - -

s e P00 0RAORRODOE
eftoosestacne
.

e Apple APL1092 343500355 PMIC

S80I BRIPEIRRRRRRAROBPRREY

AA LA LA I ISR Y

Cirrus Logic 338500509 audio codec

e Unmarked USI module—teardown update: it
turns out that this is where Apple's new U1l
ultra-wideband chip is hiding. Read all about
it about it in our blog post.

e Avago 8100 Mid/High band PAMID
® Skyworks78221-17 low-band PAMID

® STMicrolectronics STB601A0N power
management |C

® ToshibaTSB 4226VE9461CHNAL 1927 64
GE flash storage

e YY NEC ?M®9 (likely accel/gyro)

[
e
[

et
SAALLAARAAARAAARAAREALEAALLL}S

T

1
2

! A/

66

*8 XY

AL L LA L L L))

sa®bodeone
s re $e0ssANsENLNER LD
eneevie °° JLIT

L —

.
@ 4
.
-

Eh e
il A A A A A A Al

v
SA00000RRRRRAL
XXX XX

eoo000O0O0OOOERE

B

Sescooene

RF board

Apple/USI 339500648 WiFi/Bluetooth SoC
Intel X927YD2Q (likely XMM7660) modem
Intel 5765 P10 A1508B13 H1925 transceiver
Skyworks 78223-17 PAM

81013 - Qorvo Envelope Tracking

Skyworks 13797-19 DRx

Intel 6840 P10 409 H1924 baseband PMIC

v/

CS 110
Computer Architecture

Lecture 2: Introduction to C, Part |
Video 4: Pointers & Arrays

Instructors:
Soren Schwertfeger & Chundong Wang

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

School of Information Science and Technology SIST

ShanghaiTech University

Slides based on UC Berkley's CS61C
69

https://robotics.shanghaitech.edu.cn/courses/ca/20s/

* Pointers & Arrays

Agenda

70

C Arrays

 Declaration:
int ar[2];

declares a 2-element integer array: just a block of
memory

int ar[] = {795, 635};

declares and initializes a 2-element integer array

C Strings

e String in Cis just an array of characters
char string[] = "abc";

* How do you tell how long a string is?

— Last character is followed by a O byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] '= 0) n++;
return n;

Array Name / Pointer Duality

e Key Concept: Array variable is a “pointer” to the first
(0th) element

* So, array variables almost identical to pointers

— char *stringandchar string[] are nearly
identical declarations

— Differ in subtle ways: incrementing, declaration of filled
arrays

* Consequences:
— ar is an array variable, but works like a pointer
— ar[0] isthe same as *ar
— ar[2] isthe same as * (ar+2)
— Can use pointer arithmetic to conveniently access arrays

Changing a Pointer Argument?

 What if want function to change a pointer?

 What gets printed?

void inc_ptr(int *p)
{ p= p+1; }

int A[3] = {50, 60, 70};
int *q = A;
inc_ptr(q);
printf(“*q = %d\n”, *q);

A.Q.*
|

g9

50

50

60

70

Pointer to a Pointer

e Solution! Pass a pointer to a pointer, declared

as **h

* Now what gets printed?

void inc_ptr(int **h)
{ *h = *h + 1; }

int A[3] = {50, 60, 70};
int *q = A;

inc_ptr(&q);

printf(“*q = %d\n”, *q);

*q = 60
A9 9
Lo
50 60 70

C Arrays are Very Primitive

 An array in C does not know its own length,
and its bounds are not checked!

— Consequence: We can accidentally access off the
end of an array

— Consequence: We must pass the array and its size
to any procedure that is going to manipulate it

* Segmentation faults and bus errors:

— These are VERY difficult to find;
be careful!

Use Defined Constants

* Array size n; want to access from 0 to n-1, so you should use

counter AND utilize a variable for declaration & incrementation
— Bad pattern

int i, ar[10];

for(i = 0; 1 < 10; i+44+){ ... }
— Better pattern

const int ARRAY SIZE = 10;

int i, a[ARRAY SIZE];

for(i = 0; i < ARRAY SIZE; i++){ ... }

* SINGLE SOURCE OF TRUTH

— You're utilizing indirection and avoiding maintaining two copies of the
number 10

— DRY: “Don’t Repeat Yourself”

77

Pointing to Different Size Objects

* Modern machines are “byte-addressable”

— Hardware’s memory composed of 8-bit storage cells, each has a
unique address

* A Cpointer is just abstracted memory address

* Type declaration tells compiler how many bytes to fetch on
each access through pointer
— E.g., 32-bit integer stored in 4 consecutive 8-bit bytes

short *y int *x char *z

59 58 57 56455 54 53 52 51 50 49 48447 46 45 44 43/42 Byte address

\ J
— , o
16-bit short stored 32-bit integer 8-bit character

in two bytes stored in four bytes stored in one byte
78

sizeof() operator

sizeof(type) returns number of bytes in object
— But number of bits in a byte is not standardized

* In olden times, when dragons roamed the earth, bytes
could be 5, 6, 7, 9 bits long

By definition, sizeof(char)==1
Can take sizeof(arr), or sizeof(structtype)

We'll see more of sizeof when we look at
dynamic memory management

Pointer Arithmetic

pointer + number pointer — number
e.g., pointer+ 1 adds 1 something to a pointer

char *p; int *p;
char a; int a
char b; int b;
p = &a; In each, p now pointsto b p = &a;

p += 1; <«7— (Assuming compiler doesn’t —P *=

reorder variables in memory.
Never code like this!!!!)

Adds 1*sizeof (char) Adds 1*sizeof (int)
to the memory address to the memory address

Pointer arithmetic should be used cautiously

80

Arrays and Pointers

Passing arrays:

_ . Must explicitly
Really :|.n1i array paeq t/he size

* Array = pointer to the initial (Oth) array int
element foo(int array][], /
unsigned int size)

a[i] = *(a+1) {

.. array[size - 1] ..

* An array is passed to a function as a pointer

— The array size is lost! int
main (void)

{

* Usually bad style to interchange arrays and int a[10], b[5];

pointers .. foo(a, 10).. foo(b, 5) ..
— Avoid pointer arithmetic! }

81

Arrays and Pointers

int
foo(int array][],

unsigned int size)

L o
_— What does this print (32bit)? 4

printf (“$d\n”, sizeof (array)); _
) ... because array is really

a pointer (and a pointer is
architecture dependent, but

likely to be 8 on modern
machines!)

int
main (void)
{
int a[10], b[5];

. foo(a, 10).. foo(b, 5) .. ___— What does this print (32bit)? 40
printf (“%d\n”, sizeof(a)); —

82

Arrays and Pointers

int i; int *p;
int array[10]; int array[10];
for (i = 0; i < 10; i++) for (p = array; p < &array[10]; p++)
{ {
arrayl[i] = ..; P o= ..,
} }

These code sequences have the same effect!

83

C Strings

e String in Cis just an array of characters
char string[] = "abc";

* How do you tell how long a string is?

— Last character is followed by a O byte
(aka “null terminator”)

int strlen(char s[])

{
int n = 0;
while (s[n] '= 0) n++;
return n;

Concise strlen()

int strlen(char *s)
{
char *p = s;
while (*p++)
; /* Null body of while */

return (p — s - 1);

What happens if there is no zero character
at end of string?

86

Point past end of array?

* Array size n; want to access from 0 to n-1, but

test for exit by comparing to address one
element past the array

int ar[10], *p, *q, sum = 0;

p = &r[0];, g = &ar[10];
while (p '= q)

/* sum = sum + *p; p=p + 1; */
sum += *p++;

— |s this legal?

* Cdefines that one element past end of array
must be a valid address, i.e., not cause an error

Valid Pointer Arithmetic

* Add an integer to a pointer.
e Subtract 2 pointers (in the same array)
 Compare pointers (<, <=, ==, I=, >, >=)

 Compare pointer to NULL (indicates that the
pointer points to nothing)

Everything else illegal since makes no sense:
e adding two pointers

* multiplying pointers

* subtract pointer from integer

Arguments in main ()

* To get arguments to the main function, use:
—1nt main(int argc, char *argv][])
 What does this mean?

— argc contains the number of strings on the
command line (the executable counts as one, plus
one for each argument). Here argc is 2:

unix% sort myFile

— argv is a pointer to an array containing the
arguments as strings

Example

foo hello 87

argc = 3 /* number arguments */
argv[0] = "foo",

argv[l] = "hello",

argv[2] = "87"

— Array of pointers to strings

Quiz:

Piazza: “Lecture 2 PP poll”

int x[] = {0, 2, 4, 6, 8, 10, 12,
int *p = x;

int **pp = &p;

(*pp) ++;

(*pp)+= **pp;

(*(*pp)) ++;

printf("%d\n", *p);

Select the result in the poll.

14 };

91

Summary

* “Lowest High-level language”
— Use ANSI C89 in class

— => closest to assembler

* Pointers: powerful but dangerous

* Pointer arithmetic and arrays useful

